
*Corresponding Author: Muhammad Fuzail, Email: m.fuzail@ymail.com

REVIEW ARTICLE

www.ajcse.info

Asian Journal of Computer Science Engineering 2017; 2(6):08-11

Reviewing Schematic Model of Search Engine

*Muhammad Fuzail1, Anum Aftab2

*1,2Department of Computer Science and Engineering, University of Engineering and Technology, Lahore,

Pakistan.

Received on: 28/04/2017, Revised on: 08/07/2017, Accepted on: 28/07/2017

ABSTRACT

In this paper we discuss the user interfaces of search engine by using different language like HTML etc &

also we discuss design goals of search engine. We also discuss the lorel language for back-end design of

search engine and for the search engine basic searching we use different algorithm. Here we discuss

soundex algorithm for searching.

INTRODUCTION

The web creates new challenges for information

retrieval. The amount of information on the web is

growing rapidly, as well as the number of new

users inexperienced in the art of web research.

People are likely to surf the web using its link

graph, often starting with high quality human

maintained indices such as Yahoo! or with search

engines. Human maintained lists cover popular

topics effectively but are subjective, expensive to

build and maintain, slow to improve, and cannot

cover all esoteric topics.

Automated search engines that rely on keyword

matching usually return too many low quality

matches. We have built large databases to store

the information of search engines. How these

databases are created we see it by using Lore

Language. This paper describes the

implementation of Lore language designed

specifically for managing semi-structured data.

We use different search algorithms to do the

searching as search engines play a vital role in

effective searching and browsing querying.

WEB SEARCH ENGINE

Search engine technology has had to scale

dramatically to keep up with the growth of the

web. In 1994, one of the first web search engines,

the World Wide Web Worm (WWWW)

[McBryan 94] had an index of 110,000 web pages

and web accessible documents. As of November,

1997, the top search engines claim to index from 2

million (WebCrawler) to 100 million web

documents (from Search Engine Watch). It is

foreseeable that by the year 2000, a

comprehensive index of the Web will contain over

a billion documents. At the same time, the number

of queries search engines handle has grown

incredibly too. In March and April 1994, the

World Wide Web Worm received an average of

about 1500 queries per day. In November 1997,

AltaVista claimed it handled roughly 20 million

queries per day. With the increasing number of

users on the web, and automated systems which

query search engines, it is likely that top search

engines will handle hundreds of millions of

queries per day by the year 2000. The goal of our

system is to address many of the problems, both in

quality and scalability, introduced by scaling

search engine technology to such extraordinary

numbers.

DESIGN GOALS

IMPROVED SEARCH QUALITY

Our main goal is to improve the quality of web

search engines. In 1994, some people believed

that a complete search index would make it

possible to find anything easily. According to Best

of the Web 1994 -- Navigators, "The best

navigation service should make it easy to find

almost anything on the Web (once all the data is

entered)." However, the Web of 1997 is quite

different. Anyone who has used a search engine

recently can readily testify that the completeness

of the index is not the only factor in the quality of

search results. "Junk results" often wash out any

results that a user is interested in. In fact, as of

November 1997, only one of the top four

commercial search engines finds itself (returns its

own search page in response to its name in the top

ten results). One of the main causes of this

problem is that the number of documents in the

indices has been increasing by many orders of

magnitude, but the user’s ability to look at

mailto:m.fuzail@ymail.com
http://www.ajcse.info/

Fuzail Muhammad et al.\ Reviewing Schematic Model of Search Engine

© 2015, AJCSE. All Rights Reserved. 9

documents has not. People are still only willing to

look at the first few tens of results.

Because of this, as the collection size grows, we

need tools that have very high precision (number

of relevant documents returned, say in the top ten

of results). Indeed, we want our notion of

"relevant" to only include the very best documents

since there may be tens of thousands of slightly

relevant documents. This very high precision is

important even at the expense of recall (the total

number of relevant documents the system is able

to return). There is quite a bit of recent optimism

that the use of more hyper textual information can

help improve search and other applications

[Marchiori 97] [Spertus 97] [Weiss 96] [Kleinberg

98]. In particular, link structure [Page 98] and link

text provide a lot of information for making

relevance judgments and quality filtering. Google

makes use of both link structure and anchor text.

ACADEMIC SEARCH ENGINE RESEARCH

Aside from tremendous growth, the Web has also

become increasingly commercial over time. In

1993, 1.5% of web servers were on .com domains.

This number grew to over 60% in 1997. At the

same time, search engines have migrated from the

academic domain to the commercial. Up until now

most search engine development has gone on at

companies with little publication of technical

details. This causes search engine technology to

remain largely a black art and to be advertising

oriented. With Google, we have a strong goal to

push more development and understanding into

the academic realm.

Another important design goal was to build

systems that reasonable numbers of people can

actually use. Usage was important to us because

we think some of the most interesting research

will involve leveraging the vast amount of usage

data that is available from modern web systems.

For example, there are many tens of millions of

searches performed every day. However, it is very

difficult to get this data, mainly because it is

considered commercially valuable. Our final

design goal was to build an architecture that can

support novel research activities on large-scale

web data. To support novel research uses, Google

stores all of the actual documents it crawls in

compressed form. One of our main goals in

designing Google was to set up an environment

where other researchers can come in quickly,

process large chunks of the web, and produce

interesting results that would have been very

difficult to produce otherwise. In the short time

the system has been up, there have already been

several papers using databases generated by

Google, and many others are underway.

Another goal we have is to set up a Spacelab-like

environment where researchers or even students

can propose and do interesting experiments on our

large-scale web data.

This is all about the design goals of search engine.

Now we discuss the back-end design of search

engine.

THE LOREL QUERY LANGUAGE

Lore is specifically for handling semi-structured

data. In this we use the query same as SQL but in

this one should not worry about the irregularities

of data type. It uses OEM (Object Exchange

Method). In OEM objects are written in the form

of directed graphs where objects are vertices with

Object Identifiers (OID). In this information is not

fixed and can be changed dynamically. In OEM,

database is self-describing that is there is no

regularity imposed on data. Lorel offers a richer

form of "declarative navigation" .In OEM

databases than simple path expressions, namely

general path expressions. It means user can

specify desired pattern of labels in the database:

one can specify patterns for paths (to match

sequences of labels), pattern for labels (to match

sequences of characters), and pattern for atomic

values.

SYSTEM ARCHITECTURE OF LOREL

LANGUAGE

The basic architecture of the Lore system is

depicted in Figure. This section gives a brief

introduction to the components that make up Lore.

More detailed discussions of individual

components appear in subsequent sections.

Access to the Lore system is through a variety of

applications or directly via the Lore Application

Program Interface (API). There is a simple textual

interface, primarily used by the system

developers, but suitable for learning system

functionality and exploring small databases.

The graphical interface, the primary interface for

end-users, provides powerful tools for browsing

query results, a Data Guide feature for seeing the

structure of the data and formulating simple

queries \by example," a way of saving frequently

asked queries, and mechanisms for viewing the

multimedia atomic types such as video, audio, and

java. These two interface modules, along with

other applications, communicate with Lore

through the API.

The Query Compilation layer of the Lore system

consists of the parser, preprocessor, query plan

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

Fuzail Muhammad et al.\ Reviewing Schematic Model of Search Engine

© 2015, AJCSE. All Rights Reserved. 10

generator, and query optimizer. The parser accepts

a textual representation of a query, transforms it in

to a parse tree, and then passes the parse tree to

the preprocessor. The preprocessor handles the

transformation of the Lorel query into an OQL-

like query. A query plan is generated from the

transformed query and then passed to the query

optimizer. In addition to doing some (currently

simple) transformations on the query plan, the

optimizer also decides whether the use of indexes

is feasible. The optimized query plan is then sent

to the Data Engine layer.

The Data Engine layer houses the OEM object

manager, query operators, external data manager,

and various utilities. The query operators execute

the generated query plans. The object manager

functions as the translation layer between OEM

and the low- level constructs. It supports basic

primitives such as fetching an object, comparing

two objects, performing simple coercion, and

iterating over the sub-objects of a complex object.

In addition, some performance features, such as a

cache of frequently accessed objects, are

implemented in this component. The index

manager, external data manager, and Data Guide

manager. Finally, bulk loading and physical object

layout on disk.

This is all about the back-end functionality of the

search engine now we will discuss the search

algorithms in detail.

ALGORITHM

An algorithm is a procedure to solve a problem in

an orderly, finite, step-by-step logical and

Straight forward manner. An algorithm must be

finite (terminating after a finite number of steps)

and be effective (accomplish the solution of the

problem in a series of simple steps).

Here some of the important search algorithms are

discussed.

 Soundex algorithm

 Metaphone algorithm

 Phonex algorithm

 Word Stemming Algorithms

SOUNDEX ALGORITHM

Margaret O’ Dell and Robert C. Russell patented

the original soundex algorithm in 1918 (1). The

method is based on the six phonetic classifications

of human speech sounds, which in turn are

based on how you put your lips and tongue to

make the sounds.

1. Bilabial: Sound produce with both lips.

2. Labiodentals: Utter with the participation

of the lip and the teeth (the

labiodentalssounds \f\ and \v\).

3. Dental: Articulated with the tip or blade of

the tongue against or near the upper front

teeth.

4. Alveolar: Articulated with the tip of the

tongue touching or near the teeth ride.

5. Velar: Formed with the back of the tongue

touching or near the soft palate (The velar

\k\of \kill\ cool).

6. Glottal: the interruption of the breath

stream during speech by closure of the

glottis.

Terms that are often misspelled can be a problem

for database designers. Names, for example, are

variable length, can have strange spellings, and

they are not unique. Words can be misspelled or

have multiple spellings, especially across different

cultures or national sources. To solve this

problem, we need phonetic algorithms, which can

find similar sounding terms and names. Such

families of algorithms exist and are called

Soundex, after the first patented version.

The Soundex algorithm is used for search of

words on the basis of their phonetic quality. So

the results will contain words that might have

different spellings and yet sound similar when

spoken.

This algorithm is useful to search for keywords

when the exact spelling is unknown. A Soundex

algorithm takes a word, such as a person's name,

as input and produces a character string, which

identifies a set of words that are (roughly)

phonetically alike. It is very handy for searching

large databases when the user has incomplete

data. The algorithm is fairly straightforward to

code and requires no backtracking or multiple

passes over the input word. Following is the

outline of soundex algorithm.

1. Capitalize all letters in the word and drop

all punctuation marks. Pad the word with

rightmost blanks as needed during each

procedure step.

2. Retain the first letter of the word.

3. Change all occurrences of the following

letters to '0' (zero):'A', E', 'I', 'O', 'U', 'H',

'W', 'Y'. (Except when they come as an

initial letter)

4. Change letters from the following sets into

the digit given:

a. 1 = 'B', 'F', 'P', 'V'

b. 2 = 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

Fuzail Muhammad et al.\ Reviewing Schematic Model of Search Engine

© 2015, AJCSE. All Rights Reserved. 11

c. 3 = 'D','T'

d. 4 = 'L'

e. 5 = 'M','N'

f. 6 = 'R'

5. Remove all pairs of digits, which occur

beside each other from the string that

resulted after step 4.

6. Remove all zeros from the string that

results from step 5.0 (placed there in step

3)

7. Pad the string that resulted from step (5)

with trailing zeros and return only the first

fourpositions, which will be of the form

<uppercase letter><digit><digit><digit>.

Example

Steps 0 1 2 3 4 5 6

William’s à WILLIAMS à W à W0LL00MS à

W0440052 à W04052 à W4527àW452 would be

the soundex code for word WILLIAM’S.

REFERENCES

1. UnderstandingClassicSoundExAlgorithms

fromhttp://www.creativyst.com/Doc/Articl

es/SoundEx1/SoundEx1.htm/

2. Franki, P., & Leonard, S. (2001). Is

soundex good enough for you? From

http://www.onomastix.com/about_ono/whi

tepapers/wp_soundex.htm/

3. Lang, R. A. (2001). The Compact Disc

Search Engine, from

http://www.rlang.co.uk/projects/soundz/So

undz.html/

4. WWW Search Engine Software. from

http://www.Htdig.org/

5. Greenstone digital library software. from

http://www.greenstone.org/

6. Hardy, D. R., & Lee, K.-J. (2002). Harvest

User's Manual,

fromhttp://www.harvest.sourceforge.net/ha

rvest/doc/html/manual.html/

7. What is Stemming?from

http://www.comp.lancs.ac.uk/computing/r

esearch/stemming/general/

8. Lakshmi, K. V. (2002). Developing a

word-stemming program using Porter's

Algorithm,from

http://144.16.72.189/opendl/cdrom/test-

collections/gsdl/project-

reports/Lakminor/lakproj.ppt.

9. The Porter Stemming Algorithm.from

http://www.tartarus.org/~martin/PorterSte

mmer/voc.txt

10. An algorithm for suffix stripping.

Fromhttp://www.tartarus.org/~martin/Port

erStemmer/def.txt

11. The Soundex Indexing System. From

http://www.archives.gov/research_room/g

enealogy/census/soundex.html

12. Merriam-Webster Unabridged Expands.

from http://www.m-w.com/home.htm

A
JC

S
E

,
Ju

ly
-A

u
g
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

4

