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ABSTRACT 

There are n cities and N = {1, 2, 3… n}. The cost matrix C(i, j) [i, j=1,2,3,…..,n]  is the cost of the 

salesman visiting from city i to city j is given. We are given a partition of cities into groups.  The 

restriction for the salesman is that he should visit from one group to another group. The problem is to find 

a feasible tour for n cities for the salesman with minimum total cost with the above restriction. We 

propose a Lexi Search Algorithm based on Pattern Recognition Technique for solving “Generalized 

Traveling Salesman Problem” with an illustrative example. 

For this problem a computer program is developed for the algorithm and is tested. It is observed that it 

takes less time for solving fairly higher dimension problem also.  

 

Keywords: Generalized Travelling Salesman Problem (GTSP), Lexi Search algorithm, Pattern 

Recognition Technique, Trip-schedule, Pattern, Alphabet-table, Word. 

INTRODUCTION: 

The Generalized Travelling Salesman Problem 

was first addressed in [8, 19]. Exact algorithms can 

be found in Laporte et al. [10, 11], Laporte & Nobert 
[12], Fischetti et al. [5, 6], and other in [2, 14]. On the 

other hand, several worthy heuristic approaches 

have been applied to solve the Generalized 

Travelling Salesman Problem. Noon [13] presented 

several heuristics for the Generalized Travelling 

Salesman Problem among which the most 

promising one was an adaptation of the well-

known nearest-neighbor heuristic for the 

Travelling Salesman Problem. Similar adaptations 

of the farthest-insertion, nearest-insertion, and 

cheapest-insertion heuristic were proposed by 

Fischetti et al [5]. 3GI (Generalized Initialization, 

Insertion, and Improvement) is one of the most 

sophisticated heuristics; which was developed by 

Renaud and Boctor [17]. 3GI  Is a generalization of 

the I3 heuristic presented in Renaud et al [18]. 

Other exact algorithms are presented in [3, 4, 9, 20 and 

22]. But in all the above attempts the simple 

combinatorial structure of the GTSP is not at all 

taken into consideration. Several researchers [1, 15, 

16 and 20] have implemented Lexi Search approach 

for the standard TSP, with mixed results. The Lexi 

Search approach is found new best solutions for 

some well-studied benchmark problems.  The 

standard TSP is called ‘Two Dimensional TSP’. 

The standard TSP has been generalized in many 

directions. In the present paper  

1) We have introduced some practical 

constraint i.e., cluster constraint of the 

problem  

2) We have implementing the Lexicographic 

Search Approach  

3) We have made use of Pattern Recognition 

Technique which takes care of the simple 

combinatorial structure of the problem.    

There exist several applications of the GTSP such 

as   

1) Postal routing   

2) Computer files processing     

3) Order picking in warehouses    

4) Process planning for rotational parts  

5) The routing of clients through welfare 

agencies.  

Furthermore, many other combinatorial 

optimization problems can be reduced to the 

GTSP problem. The GTSP is NP-hard since it is a 

special case of the TSP which is partitioned into m 

clusters with each containing only one node.    

Here we study the following “Generalized 

Travelling Salesman Problem” (GTSP): 

“There are n cities and N= {1, 2, 3… n}. The cost 

array C (i, j) is the cost of a salesman visiting 

from city i to city j (i, j=1, 2, 3… n)”.The set of n 

cities are divided into r groups or clusters suchthat 
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N= 1 2 3{ , , ,..........., }rN N N N and i jN N 

.The restriction is the Traveling Salesman has to 

visit from one cluster to another cluster. 

The problem is to find a minimum cost tour by 

visiting n cities, with the above restriction. 

 

MATHEMATICAL FORMULATION: 

 

The solution X (i, j), (i, j) JXI  be defined as: 

X (i, j)      = 1, if the salesman visits city j from 

city i = 0, otherwise 

and N=N1N2N3……Nr, NiNj=, ij 

Then the problem can be defined as: 

Min
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                       X (i, j) =0 or 1, (i, j) IxJ  (4) 

 

Where i,j={1,2,3,…..,n}  are the sets of cities and  

C(i,j)  is the amount of cost by visiting ith city to 

jth  city. It is to be noted that equations (2) to (4) 

define the constraint set of the generalized 

traveling salesman problem, whose objective 

function is Min
 

n

i

n

j

jiXjiC
1 1

),(),( . 

X=X (i, j) is a feasible tour if it satisfies all the 

above conditions.  

 

Numerical illustration: 

The concepts and the algorithm developed will be 

illustrated by a numerical example for which n=6, 

let N= [1, 2, 3, 4, 5, 6]. 

ENCODING:  

1.Group coding: First two cities i.e., 1,2 are 

considered as first group; next two cities i.e., 3,4 

are considered as second group; and the remaining 

cities 5,6 are considered as third group; i.e.,  

 
 1 2 3 4 5 6 

GN 1 1 2 2 3 3 

Where GN (i) = j indicates that the ith   city in the jth cluster or 
group 

 

Table –1 
 

 C (i,j) =     



























999971147161

2199995413151

29599991771

54711699991722

842215999917

2610227149999

 

 

In the numerical example given in Table-1, C (i, 

j), i=j, i, j=1,2,3,4,5,6 are taken to be very high 

number 9999 because they are irrelevant for 

finding tours of the salesman. Though the entire C 

(i, j) are taken as non – negative integers it can be 

easily seen that this is not a necessary condition 

and the cost as well be negative quantities. 

 

CONCEPTS AND DEFINITIONS: 

 Lexi Search Method 

The Lexi search derives its name from 

lexicography “The science of effective 

storage and retrieval of information”. The 

solution space of the problem is arranged 

in a block-hierarchical order, like the 

words in a dictionary. Each node is 

considered as a letter in an alphabet and 

each tour can be represented as a word 

with this alphabet.  The entire set of words 

in this dictionary is partitioned into 

“blocks”, defined and identified by their 

“leader‟ i.e., the first few letters of the 

words in the block, which are common. By 

the structure of the problem, it is often 

possible to obtain bounds to the values of 

all the words in a block by an examination 

of its leader. Hence, by comparing that 

bound with the value of a trial solution, 

one can jump over to either the next 

‟block‟ or next “super-block‟ if the 

current one cannot contain any word better 

than the trial solution. In case the block 

contains a “better word‟, one can go into 

the sub-block. 

Let a, b, c and d be the four nodes to be 

covered. The words starting with “a‟ can 

be grouped together. Such a group is 

called a “block‟ and node “a‟ is called a 

leader of the block. In a block there can be 

sub-blocks. For instance, block of words 

with leader “a‟ has sub-blocks {abc, abcd, 

abdc} with a leader‟ab‟. There could be 

blocks with only one word, for instance, 

the block with leader “abd ‟ has only one 

word. All incomplete words can be used as 

leaders to def'ine blocks. For each of the 

blocks with leaders “ab‟, ‟ac‟, ‟ad” the 

block with leader “a‟ is a  “super-block‟. 
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It is noted that blocks with are mutually 

exclusive and collectively exhaustive can 

be constructed. For this problem, it is 

clarified that an incomplete (partial) word 

does not necessarily imply a sub tour and 

our “lexi-search” is for words without sub 

tours. The search is started with the first 

incomplete word “a‟ as the leader. As the 

search is for an optimum solution, we 

jump a block if its bound is greater than or 

even equal to the current trial solution: no 

complete word in the block can be better 

than the current one (through there may be 

a word that is equally good) 

 Definition Of Pattern 

An indicator two-dimensional array which 

is associated with a tour is called a 

“pattern‟. A pattern is said to be feasible if 

X is a feasible solution. Now V(x) the 

value of the pattern X is defined as V (X) 

=  
 

n

1i

n

1j

),(.),( jiXjiC  . 

The value V(X) gives the total cost of the 

tour for the solution represented by X. 

Thus the value of the feasible pattern gives 

the total cost represented by it. In the 

algorithm, which is developed in the 

sequel, a search is made for a feasible 

pattern with the least value. Each pattern 

of the solution X is represented by the set 

of ordered triples [(i, j)] for which X (i, 

j)=1, with the understanding that the other 

X(i, j)’s are zeros. 

 Definition Of An Alphabet – Table And 

A Word 

There are M= n x n ordered doubles in the 

two-dimensional array X. For convenience 

these are arranged in ascending order of 

their corresponding costs and are indexed 

from 1 to M (Sundara Murthy-1979). Let 

SN= [1, 2, 3…M] be the set of M indicies. 

Let D be the corresponding array of costs. 

If a, bSN and a<b then D (a)   D (b). 

Also let the arrays R, C be the array of 

row, column Indicies of the ordered 

doubles represented by SN and DC be the 

array of cumulative sums of the elements 

of D. The set SN is defined as the 

“Alphabet-Table” with alphabetic order as 

(1, 2, 3… M).The arrays SN, D, DC, R, C 

for the numerical example are given in the 

table-2. If P   SN then (R(P), C(P)) is the 

ordered double and D(a)= C(R(a),C(a)) is 

the value of the ordered triple and DC(a)= 




a

1i

D(i)       

                   Table-2(Alphabet – Table) 

 

S. D DC R C  S. D DC R C 

1 1 1 4 1  16 17 143 3 2 

2 1 2 6 4  17 17 160 4 3 

3 2 4 1 4  18 21 181 5 6 

4 4 8 2 5  19 22 203 2 4 

5 5 13 4 5  20 22 225 3 1 

6 5 18 5 4  21 26 251 1 6 

7 7 25 4 2  22 27 278 1 3 

8 7 32 6 5  23 29 307 4 6 

9 8 40 2 6  24 31 338 5 2 

10 10 50 1 5 
 

25 41 379 5 3 

11 14 64 1 2  26 51 430 5 1 

12 14 78 6 3  27 54 484 3 6 

13 15 93 2 3  28 61 545 1 6 

14 16 109 3 4  29 71 616 3 5 

15 17 126 2 1 
 

30 71 687 6 2 

 

Let   LK= {a1,a2,……,aK}, ai  SN be an 

ordered sequence of k indicies from SN. 

The pattern represented by the ordered 

double whose indicies are given by Lk is 

independent of the order of ai in the 

sequence. Hence for uniqueness the 

indicies are arranged in the increasing 

order such that ai ai+1, i=1,2… n-1. The 

set SN is defined as the “Alphabet-Table” 

with alphabetic order as (1,2,3…n2) and 

the ordered sequence LK is defined as a 

“word” of length k. A word Lk is called a 

“Sensible word”. If ai
 
< ai+1, for i=1,2,3…k-

1 and if this condition is not met it is 

called a “insensible word”. A word LK is 

said to be feasible if the corresponding 

pattern X is feasible and same is with the 

case of infeasible and partial feasible. 

Therefore a partial feasible word is said to 

be feasible if k=n.  
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A partial word Lk is said to be feasible if 

the block of words represented by LK has 

at least one feasible word or, equivalently 

the partial pattern represented by Lk should 

not have any inconsistency. Any of the 

letters in SN can occupy the first place in 

the partial word L k . Consider LK-1 = 

(a1,a2,………..,ak-1). The alphabet for the 

kth position is SNak-1=(ak-1+1,ak-1+2… n2), 

where SNP is defined as SNP 

=(p+1,p+2,…….,n2). Thus for example 

consider a word with two letters as 

(a1,a2)=(1,3). Then SNa2=SN3=(4,5,6…30) 

is the alphabet for the third position. We 

concentrate on the set of words of length at 

most m (for the numerical example it is 6). 

A leader Lk (k<n) is said to be feasible, if 

the block of words defined by it contains 

at least one feasible word or equivalently 

there should not be inconsistency in the 

partial pattern defined by the partial word. 

The value of the LK , V(LK) is defined 

recursively as V (LK)=V (LK-1)+D (aK) 

with V (L0)=0 obviously this V(LK) and 

V(X) the values of the pattern X 

represented by L k  will be same (Sundara 

Murthy-1979). For example consider 

L3=(1,3,4). Then V(L3) will be 

V(L3)=1+2+4=7 

LOWER BOUND OF A PARTIAL WORD LB 

(LK) 

 

A lower bound LB (L k ) for the values of the 

block of words represented by L k  can be defined 

as follows: LB (LK) = V (LK) + j)D(a
kn

1j

k 




  = V 

(LK) + DC (aK + n-k) - DC (aK) 

Consider the partial word L3 = (1, 2, 4) 

V (L3) = 1+1+4=6 

 LB (L3) = V (L3) + DC (a3+6-3) – DC (a3) 

    = 6 + DC (4+6-3) - DC (4) 

 = 6 + DC (7) – DC (4)   = 6+25-8 = 23 

 

FEASIBILITY CRITERION OF A PARTIAL 

WORD: 

 

A recursive algorithm is developed for checking 

the feasibility of a partial word LK+1= (a1, 

a2,…..,ak, ak+1) given that LK is a feasible partial 

word. We will introduce some more notations 

which will be useful in the sequel. 

RI  be an array where RI (i) =1, i   N 

represents that the salesman is visiting                        

some city from city i, otherwise zero. 

CI be an array where CI (i) =1, i   N 

represents that the salesman is coming to city i                            

from some city; otherwise zero.     

SW be an array where SW (i) is the city that 

the salesman is visiting from city i, Sw(i)= 0      

indicates that the salesman is not visiting any city 

from city i. 

L          be an array where L (i) is the letter in the 

ith position of a word. 

GN be an array where GN(i) is the city in ith 

grade,GN(i)=1 indicates that the salesman is  

in ith grade. 

Then for a given partial word LK = (a1,a2,…..,aK) 

the values of the arrays RI, CI, SW, L,  GNR and 

GNC as follows. 

RI(R (ai)) =1,           i=1, 2, 3……..K  

CI(C (ai)) =1,            i=1, 2, 3……..K  

SW(R (ai)) =C (ai),    i=1, 2, 3……..K  

L (i) =ai,                      i=1, 2, 3……..K   

GNR(R(ai))=GN(R(ai)) 

GNC(C(ai))=GN(C(ai)) 

For example consider a sensible partial word L3= 

(1, 2, 9) which is feasible. The array RI, CI, SW, 

L, GNR and GNC takes the values represented in 

the table-3 given below.  

 
Table-3 

 1 2 3 4 5 6 

RI 0 1 0 1 0 1 

CI 1 0 0 1 0 1 

SW 0 6 0 1 0 4 

L 1 2 9 - - - 

GNR 0 1 0 2 0 3 

GNC 1 0 0 2 0 3 

 

The recursive algorithm for checking the 

feasibility of a partial word LP is given as follows: 

In the algorithm first we equate IX=0. At the end 

if IX=1 then the partial word is feasible, otherwise 

it is infeasible. For this algorithm we have RI, CI, 

SW, TR=R (ap+1), TC=C (aP+1).       

 

Algorithm-1: 

 

STEP1 : IX=0 

                TCX=TC 

   GOTO 2 

STEP 2 : IS (RI (TR) = 1) IF YES GOTO 8 

    IF NO GOTO 3 

 

STEP 3 : IS (CI (TC) = 1) IF YES GOTO 8 
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                  IF NO GOTO 4 

 

STEP4 : IS GS (TR)) = GS (TC) IF YES GOTO STEP 8  

    IF NO GOTO 5  

 

STEP5 : IS (SW (TCX) = 0)     IF YES IX=1 GOTO 8 

            IF NO IK=SW (TCX) GOTO 6 

 

STEP6 : IS (IK=TR)         IF YES GOTO 7 

     IF NO TCX=IK GOTO 5 

 

STEP7 : IS (I=N)  IF YES IX=1 GOTO 8  

   IF NO GOTO 8 

 

STEP8 : STOP  

  

This recursive algorithm will be used as a 

subroutine in the lexi-search algorithm. We start 

the algorithm with a very large value, say, 9999 as 

a trial value of VT. If the value of a feasible word 

is known, we can as well start with that value as 

VT. During the search the value of VT is 

improved. At the end of the search the current 

value of VT gives the optimal feasible word. We 

start with the partial word L1= (a1) = (1). A partial 

word Lp=Lp-1  (ap) where   indicates chain form 

or concatenation.  We will calculate the values of 

V (Lp) and LB (Lp) simultaneously. Then two 

cases arises (one for branching and other for 

continuing the search).                                                                                                                                                        

1. LB (Lp) < VT. Then we check whether Lp 

is feasible or not. If it is feasible we 

proceed to consider a partial word of order 

(p+1), which represents a sub block of the 

block of words represented by Lp. If Lp is 

not feasible then consider the next partial 

word of order p by taking another letter 

which succeeds ap in the pth position. If all 

the words of order p are exhausted then we 

consider the next partial word of order (p-

1). 

2. LB (LP)   VT. In this case we reject the 

partial word meaning that the block of 

words with Lp as leader is rejected for not 

having an optimal word and we also reject 

all partial words of order p that succeeds 

Lp.  

Now we are in a position to develop lexi search 

algorithm to find an optimal feasible word. 

 

Algorithm 2: (Lexi-Search Algorithm) 

 

The following algorithm gives an optimal feasible 

word. 

STEP 1 : (Initialization) The arrays SN, D,  DC,  R,  C 

and values of N, GN are  made  available   RI, CI, SW,  

L, GNR,GNC, V, LB  are initialized to zero. The values 

I=1, J=0, VT=9999, NZ=NNN –N, MAX=NZ-1 

STEP 2 : J=J+1  IS (J>MAX) IF YES GOTO 11 

                        IF NO GOTO 3 

STEP 3 : L (I) = J JA = J + N – I;  

                                    IS (I = 1)   

                                    IF YES   V (I) = D (J) GOTO 3B 

                          IF NO GOTO 3A 

STEP 3A: V (I) = V (I -1) + D (J)  

                                      GOTO 3B          

STEP 3B:  LB (I) = V (I) + DC (JA) – DC (J) 

            GOTO 4 

STEP 4 : IS (LB (I)   VT) IF YES GOTO 11 

          IF NO GOTO 5 

STEP 5 : TR=R (J) 

     TC=C (J) 

     GOTO 6 

STEP 6  : CHECK THE FEASIBILITY OF L (USING 

ALGORITHM-1)  

                 IS (IX=0) IF YES GOTO 2 

                                  IF NO GOTO 7 

 

STEP 7 : IS (I=N) IF YES GOTO 10 

     IF NO GOTO 8 

 

STEP 8 : L (I) = J 

    RI (TR) = 1 

    CI (TC) = 1 

    SW (TR) = TC 

    GOTO 9 

STEP 9 : I=I+1 

    MAX=MAX+1 

    GOTO 2 

STEP10 : L (I) =J 

 L (I) IS FULL LENGTH WORD AND IS FEASIBLE. 

                VT=V (I), record L (I), VT,  

   GOTO 13 

STEP11 : IS (I=1) IF YES GOTO 14 

    IF NO GOTO 12 

STEP12 : I=I-1 

    MAX=MAX+1 

 GOTO 13 

STEP13 : J=L (I) 

   TR = R (J) 

  TC = C (J) 

 RI (TR) = 0 

  CI (TC) = 0 

  SW (TR) = 0 

  GOTO 2 

STEP14 : STOP 

  END 

 

The current value of VT at the end of the search is 

the value of the optimal feasible word. At the end 

if VT = 9999 it indicates that there is no feasible 

solution. 

 

 Search table: 

  

The working details of getting an optimal word, 

using the above algorithm for the illustrative 
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numerical example are given in the Table-4. The 

columns (1), (2), (3) and (4) gives the letters in the 

first, second, third and fourth places respectively. 

The corresponding V (I) and L B (I) are indicated 

in the next two columns. The row R, C and T 

gives the row, column and time indices of the 

letter. The last column gives the remarks 

regarding the acceptability of the partial words. In 

the following table A indicates ACCEPT and R 

indicates REJECT. 

 
Table- 4: Search table 

 
S.N 1 2 3 4 5 6 V LB R C REM 

1 1      1 18 4 1 A 

2  2     2 18 6 4 A 

3   3    4 18 1 4 R 

4   4    6 23 2 5 A 

5    5   11 23 4 5 R 

6    6   11 25 5 4 R 

7    7   13 28 4 2 R 

8    8   13 31 6 5 R 

9    9   14 38 2 5 R 

10    10   16 44 1 5 R 

11    11   20 49 1 2 R 

12    12   20 51 6 3 R 

13    13   21 54 2 3 R 

14    14   22 56 3 4 R 

15    15   23 57 2 1 R 

16    16   23 61 3 2 A 

17     17  40 61 4 3 R 

18     18  42 62 5 6 A 

19      19 64 64 2 4 R 

20      20 64 64 3 1 R 

21      21 68 68 1 6 R 

22      22 69 69 1 3 A=V

T=69 

23     19  45 67 2 4 R 

24     20  45 71 3 1 R>VT 

25    17   23 66 4 3 R 

26    18   27 71 5 6 R>VT 

27   5    7 26 4 5 R 

28   6    7 29 5 4 R 

29   7    9 34 4 2 R 

30   8    9 41 6 5 R 

31   9    10 48 2 6 A 

32    10   20 48 1 5 A 

33     11  34 48 1 2 R 

34     12  34 49 6 3 R 

35     13  35 51 2 3 R 

36     14  36 53 3 4 R 

37     15  37 54 2 1 R 

38     16  37 54 2 3 A 

39      17 54 54 4 3 R 

40      18 58 58 5 6 R 

41      19 59 59 2 4 R 

42      20 59 59 3 1 R 

43      21 63 63 1 6 R 

44      22 64 64 1 3 R 

45      23 66 66 4 6 R 

46      24 68 68 5 2 R 

47      25 78 78 5 3 R>VT 

48     17  37 58 4 3 R 

49     18  41 63 5 6 R 

50     19  42 64 2 4 R 

51     20  42 68 3 1 R 

52     21  46 73 1 6 R>VT 

53    11   24 53 1 2 R 

54    12   24 55 6 3 R 

55    13   25 58 2 3 R 

56    14   26 60 3 4 R 

57    15   27 61 2 1 R 

58    16   27 65 3 2 A 

59     17  44 65 4 3 R 

60     18  48 70 5 6 R>VT 

61    17   27 70 4 3 R>VT 

62   10    12 55 1 5 A 

63    11   26 55 1 2 R 

64    12   26 57 6 3 R 

65    13   27 60 2 3 A 

66     14  43 60 3 4 R 

67     15  44 61 2 1 R 

68     16  44 61 3 2 R 

69     17  44 65 4 3 R 

70     18  48 70 5 6 R>VT 

71    14   28 62 3 4 R 

72    15   29 63 2 1 R 

73    16   29 67 3 2 A 

74     17  46 67 4 3 R 

75     18  50 72 5 6 R>VT 

76    17   29 73 4 3 R>VT 

77   11    16 61 1 2 A 

78    12   30 61 6 3 R 

79    13   31 64 2 3 A 

80     14  47 64 3 4 R 

81     15  48 65 2 1 R 

82     16  48 65 3 2 R 

83     17  48 69 4 3 R=VT 

84    14   32 65 3 4 R 

85    15   33 67 2 1 R 

86    16   33 71 3 2 R>VT 

87   12    16 62 6 3 R 

88   13    17 67 2 3 A 

89    14   33 67 3 4 R 

90    15   34 68 2 1 R 

91    16   34 72 3 2 R>VT 

92   14    18 69 3 4 R=VT 

93  3     3 24 1 4 R 

94  4     5 29 2 5 A 

95   5    10 29 4 5 R 

96   6    10 32 5 4 A 

97    7   17 32 4 2 R 

98    8   17 35 6 5 R 

99    9   18 42 2 6 R 

100    10   20 48 1 5 R 

101    11   24 53 1 2 R 

102    12   24 55 6 3 A 

103     13  39 55 2 3 R 

104     14  40 57 3 4 R 

105     15  41 58 2 1 R 

106     16  41 58 3 2 A 

107      17 58 58 4 3 R 

108      18 62 62 5 6 R 

109      19 63 63 2 4 R 

110      20 63 63 3 1 R 

111      21 67 67 1 6 R 

112      22 68 68 1 3 R 

113      23 70 70 4 6 R>VT 

 

At the end of the search the current value of VT is 

69 and it is the value of the optimal feasible word 

L6 = (1, 2, 4,16, 18, 22). It is given in the 22nd row 

of the search table. The array RI, CI, TI, SW, L, 

GNR and GNC takes the values represented in the 

Table-5 given below. The Pattern represented by 

the above optimal feasible word is represented in 

the following table-6. 
Table – 5 

 
 1 2 3 4 5 6 

RI 1 1 1 1 1 1 

CI 1 1 1 1 1 1 

SW 3 5 2 1 6 4 

L 1 2 4 16 18 22 

GNR 1 1 2 2 3 3 

GNC 1 1 2 2 3 3 
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Table-6 

        





























001000

100000

000001

000010

010000

000100

),( jiX   

The tour represented by the above pattern is 

[(1,3), (3,2), (2,5), (5,6),(6,4),(4,1)], where, the 

salesman, from city 1 goes to city 3 (i.e., from 

group 1 to group 2) , from city 3 goes to city 2 

(i.e., from group 2 to group 1) , from city 2 goes 

to city 5 (i.e., from group 2 to group 3) , from city 

5 goes to city 6(i.e., from group 3 to group 3), 

from city 6 goes to city 4(i.e., from group 3 to 

group 2) and from city 4 goes to city 1(i.e., from 

group 2 to group 1).   

It also can be represented by   

         1 3  2   5  641 

  

Computational experience: 

A Computer program for the above algorithm is 

written in C language and is tested. Random 

numbers are used to construct the cost matrix.  

The following table-7 gives the list of the 

problems tried along with the average CPU time 

in seconds required for solving them. In the table 

AT represents the CPU time to construct the 

alphabet-table and ET represents the CPU time 

taken for the search of a feasible word. The time is 

represented in seconds. In the table-8 ‘n’ is the 

number of cities. 

Experiments are carried and by generating the 

three different classes of random data sets, where 

the three types of data sets are defined as follows: 

 

Type 1: C (i, j) are uniformly random in [1,100] 

Type 2: a) C (i, j) are uniformly random in [1,100] 

             b) VT=0.85VT 

Type 3: a) C (i, j) are uniformly random in [1,100] 

             b)Max=(nxnxn)/3 

 

And the results are tabulated in Table. For each 

type, four data sets are tested. It is seen that time 

required for the search (ET) of the optimal 

solution is fairly less. 

 

 
Table-7 

 

 

In the above table it can be noticed that the 

average CPU time for n=260 in Type 1 is 

8.71seconds and for Type 2 it is 8.36 seconds. The 

reduction in time is because the search for optimal 

solution is made around 0.85VT. But in second 

case also we are getting the same optimal solution. 

In Type 3 the search is in 1/3 of the alphabet table, 

so it takes less time and interestingly here also we 

are getting the same optimal solution for these 

problems.    
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