
*Corresponding Author: U. Balakrishna , Email: prasanti_balu@rediffmail.com

RESEARCH ARTICLE

www.ajcse.info

 Asian Journal of Computer Science Engineering 2017; 2(3): 17-24

A Lexi Search Approach to Generalized Travelling Salesman Problem

*Dr. U. Balakrishna1

*Professor of Mathematics, Department of Science & Humanities, Sreenivasa Institute of Technology and

Management Studies, Chittoor

Received on: 25/03/2017, Revised on: 02/04/2017, Accepted on: 25/05/2017

ABSTRACT

There are n cities and N = {1, 2, 3… n}. The cost matrix C(i, j) [i, j=1,2,3,…..,n] is the cost of the

salesman visiting from city i to city j is given. We are given a partition of cities into groups. The

restriction for the salesman is that he should visit from one group to another group. The problem is to find

a feasible tour for n cities for the salesman with minimum total cost with the above restriction. We

propose a Lexi Search Algorithm based on Pattern Recognition Technique for solving “Generalized

Traveling Salesman Problem” with an illustrative example.

For this problem a computer program is developed for the algorithm and is tested. It is observed that it

takes less time for solving fairly higher dimension problem also.

Keywords: Generalized Travelling Salesman Problem (GTSP), Lexi Search algorithm, Pattern

Recognition Technique, Trip-schedule, Pattern, Alphabet-table, Word.

INTRODUCTION:

The Generalized Travelling Salesman Problem

was first addressed in [8, 19]. Exact algorithms can

be found in Laporte et al. [10, 11], Laporte & Nobert
[12], Fischetti et al. [5, 6], and other in [2, 14]. On the

other hand, several worthy heuristic approaches

have been applied to solve the Generalized

Travelling Salesman Problem. Noon [13] presented

several heuristics for the Generalized Travelling

Salesman Problem among which the most

promising one was an adaptation of the well-

known nearest-neighbor heuristic for the

Travelling Salesman Problem. Similar adaptations

of the farthest-insertion, nearest-insertion, and

cheapest-insertion heuristic were proposed by

Fischetti et al [5]. 3GI (Generalized Initialization,

Insertion, and Improvement) is one of the most

sophisticated heuristics; which was developed by

Renaud and Boctor [17]. 3GI Is a generalization of

the I3 heuristic presented in Renaud et al [18].

Other exact algorithms are presented in [3, 4, 9, 20 and

22]. But in all the above attempts the simple

combinatorial structure of the GTSP is not at all

taken into consideration. Several researchers [1, 15,

16 and 20] have implemented Lexi Search approach

for the standard TSP, with mixed results. The Lexi

Search approach is found new best solutions for

some well-studied benchmark problems. The

standard TSP is called ‘Two Dimensional TSP’.

The standard TSP has been generalized in many

directions. In the present paper

1) We have introduced some practical

constraint i.e., cluster constraint of the

problem

2) We have implementing the Lexicographic

Search Approach

3) We have made use of Pattern Recognition

Technique which takes care of the simple

combinatorial structure of the problem.

There exist several applications of the GTSP such

as

1) Postal routing

2) Computer files processing

3) Order picking in warehouses

4) Process planning for rotational parts

5) The routing of clients through welfare

agencies.

Furthermore, many other combinatorial

optimization problems can be reduced to the

GTSP problem. The GTSP is NP-hard since it is a

special case of the TSP which is partitioned into m

clusters with each containing only one node.

Here we study the following “Generalized

Travelling Salesman Problem” (GTSP):

“There are n cities and N= {1, 2, 3… n}. The cost

array C (i, j) is the cost of a salesman visiting

from city i to city j (i, j=1, 2, 3… n)”.The set of n

cities are divided into r groups or clusters suchthat

http://www.ajcse.info/

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

18
© 2015, AJCSE. All Rights Reserved.

N= 1 2 3{ , , ,..........., }rN N N N and i jN N 

.The restriction is the Traveling Salesman has to

visit from one cluster to another cluster.

The problem is to find a minimum cost tour by

visiting n cities, with the above restriction.

MATHEMATICAL FORMULATION:

The solution X (i, j), (i, j) JXI be defined as:

X (i, j) = 1, if the salesman visits city j from

city i = 0, otherwise

and N=N1N2N3……Nr, NiNj=, ij

Then the problem can be defined as:

Min
 

n

i

n

j

jiXjiC
1 1

),(),((1)

 Subject to: 1),(
1 1


 

n

i

n

j

jiX (2)

 njiX
n

i

n

j


 1 1

),((3)

 X (i, j) =0 or 1, (i, j) IxJ (4)

Where i,j={1,2,3,…..,n} are the sets of cities and

C(i,j) is the amount of cost by visiting ith city to

jth city. It is to be noted that equations (2) to (4)

define the constraint set of the generalized

traveling salesman problem, whose objective

function is Min
 

n

i

n

j

jiXjiC
1 1

),(),(.

X=X (i, j) is a feasible tour if it satisfies all the

above conditions.

Numerical illustration:

The concepts and the algorithm developed will be

illustrated by a numerical example for which n=6,

let N= [1, 2, 3, 4, 5, 6].

ENCODING:

1.Group coding: First two cities i.e., 1,2 are

considered as first group; next two cities i.e., 3,4

are considered as second group; and the remaining

cities 5,6 are considered as third group; i.e.,

 1 2 3 4 5 6

GN 1 1 2 2 3 3

Where GN (i) = j indicates that the ith city in the jth cluster or
group

Table –1

 C (i,j) =



























999971147161

2199995413151

29599991771

54711699991722

842215999917

2610227149999

In the numerical example given in Table-1, C (i,

j), i=j, i, j=1,2,3,4,5,6 are taken to be very high

number 9999 because they are irrelevant for

finding tours of the salesman. Though the entire C

(i, j) are taken as non – negative integers it can be

easily seen that this is not a necessary condition

and the cost as well be negative quantities.

CONCEPTS AND DEFINITIONS:

 Lexi Search Method

The Lexi search derives its name from

lexicography “The science of effective

storage and retrieval of information”. The

solution space of the problem is arranged

in a block-hierarchical order, like the

words in a dictionary. Each node is

considered as a letter in an alphabet and

each tour can be represented as a word

with this alphabet. The entire set of words

in this dictionary is partitioned into

“blocks”, defined and identified by their

“leader‟ i.e., the first few letters of the

words in the block, which are common. By

the structure of the problem, it is often

possible to obtain bounds to the values of

all the words in a block by an examination

of its leader. Hence, by comparing that

bound with the value of a trial solution,

one can jump over to either the next

‟block‟ or next “super-block‟ if the

current one cannot contain any word better

than the trial solution. In case the block

contains a “better word‟, one can go into

the sub-block.

Let a, b, c and d be the four nodes to be

covered. The words starting with “a‟ can

be grouped together. Such a group is

called a “block‟ and node “a‟ is called a

leader of the block. In a block there can be

sub-blocks. For instance, block of words

with leader “a‟ has sub-blocks {abc, abcd,

abdc} with a leader‟ab‟. There could be

blocks with only one word, for instance,

the block with leader “abd ‟ has only one

word. All incomplete words can be used as

leaders to def'ine blocks. For each of the

blocks with leaders “ab‟, ‟ac‟, ‟ad” the

block with leader “a‟ is a “super-block‟.

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

19
© 2015, AJCSE. All Rights Reserved.

It is noted that blocks with are mutually

exclusive and collectively exhaustive can

be constructed. For this problem, it is

clarified that an incomplete (partial) word

does not necessarily imply a sub tour and

our “lexi-search” is for words without sub

tours. The search is started with the first

incomplete word “a‟ as the leader. As the

search is for an optimum solution, we

jump a block if its bound is greater than or

even equal to the current trial solution: no

complete word in the block can be better

than the current one (through there may be

a word that is equally good)

 Definition Of Pattern

An indicator two-dimensional array which

is associated with a tour is called a

“pattern‟. A pattern is said to be feasible if

X is a feasible solution. Now V(x) the

value of the pattern X is defined as V (X)

= 
 

n

1i

n

1j

),(.),(jiXjiC .

The value V(X) gives the total cost of the

tour for the solution represented by X.

Thus the value of the feasible pattern gives

the total cost represented by it. In the

algorithm, which is developed in the

sequel, a search is made for a feasible

pattern with the least value. Each pattern

of the solution X is represented by the set

of ordered triples [(i, j)] for which X (i,

j)=1, with the understanding that the other

X(i, j)’s are zeros.

 Definition Of An Alphabet – Table And

A Word

There are M= n x n ordered doubles in the

two-dimensional array X. For convenience

these are arranged in ascending order of

their corresponding costs and are indexed

from 1 to M (Sundara Murthy-1979). Let

SN= [1, 2, 3…M] be the set of M indicies.

Let D be the corresponding array of costs.

If a, bSN and a<b then D (a)  D (b).

Also let the arrays R, C be the array of

row, column Indicies of the ordered

doubles represented by SN and DC be the

array of cumulative sums of the elements

of D. The set SN is defined as the

“Alphabet-Table” with alphabetic order as

(1, 2, 3… M).The arrays SN, D, DC, R, C

for the numerical example are given in the

table-2. If P  SN then (R(P), C(P)) is the

ordered double and D(a)= C(R(a),C(a)) is

the value of the ordered triple and DC(a)=




a

1i

D(i)

 Table-2(Alphabet – Table)

S. D DC R C S. D DC R C

1 1 1 4 1 16 17 143 3 2

2 1 2 6 4 17 17 160 4 3

3 2 4 1 4 18 21 181 5 6

4 4 8 2 5 19 22 203 2 4

5 5 13 4 5 20 22 225 3 1

6 5 18 5 4 21 26 251 1 6

7 7 25 4 2 22 27 278 1 3

8 7 32 6 5 23 29 307 4 6

9 8 40 2 6 24 31 338 5 2

10 10 50 1 5

25 41 379 5 3

11 14 64 1 2 26 51 430 5 1

12 14 78 6 3 27 54 484 3 6

13 15 93 2 3 28 61 545 1 6

14 16 109 3 4 29 71 616 3 5

15 17 126 2 1

30 71 687 6 2

Let LK= {a1,a2,……,aK}, ai SN be an

ordered sequence of k indicies from SN.

The pattern represented by the ordered

double whose indicies are given by Lk is

independent of the order of ai in the

sequence. Hence for uniqueness the

indicies are arranged in the increasing

order such that ai ai+1, i=1,2… n-1. The

set SN is defined as the “Alphabet-Table”

with alphabetic order as (1,2,3…n2) and

the ordered sequence LK is defined as a

“word” of length k. A word Lk is called a

“Sensible word”. If ai

< ai+1, for i=1,2,3…k-

1 and if this condition is not met it is

called a “insensible word”. A word LK is

said to be feasible if the corresponding

pattern X is feasible and same is with the

case of infeasible and partial feasible.

Therefore a partial feasible word is said to

be feasible if k=n.

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

20
© 2015, AJCSE. All Rights Reserved.

A partial word Lk is said to be feasible if

the block of words represented by LK has

at least one feasible word or, equivalently

the partial pattern represented by Lk should

not have any inconsistency. Any of the

letters in SN can occupy the first place in

the partial word L k . Consider LK-1 =

(a1,a2,………..,ak-1). The alphabet for the

kth position is SNak-1=(ak-1+1,ak-1+2… n2),

where SNP is defined as SNP

=(p+1,p+2,…….,n2). Thus for example

consider a word with two letters as

(a1,a2)=(1,3). Then SNa2=SN3=(4,5,6…30)

is the alphabet for the third position. We

concentrate on the set of words of length at

most m (for the numerical example it is 6).

A leader Lk (k<n) is said to be feasible, if

the block of words defined by it contains

at least one feasible word or equivalently

there should not be inconsistency in the

partial pattern defined by the partial word.

The value of the LK , V(LK) is defined

recursively as V (LK)=V (LK-1)+D (aK)

with V (L0)=0 obviously this V(LK) and

V(X) the values of the pattern X

represented by L k will be same (Sundara

Murthy-1979). For example consider

L3=(1,3,4). Then V(L3) will be

V(L3)=1+2+4=7

LOWER BOUND OF A PARTIAL WORD LB

(LK)

A lower bound LB (L k) for the values of the

block of words represented by L k can be defined

as follows: LB (LK) = V (LK) + j)D(a
kn

1j

k 




 = V

(LK) + DC (aK + n-k) - DC (aK)

Consider the partial word L3 = (1, 2, 4)

V (L3) = 1+1+4=6

 LB (L3) = V (L3) + DC (a3+6-3) – DC (a3)

 = 6 + DC (4+6-3) - DC (4)

 = 6 + DC (7) – DC (4) = 6+25-8 = 23

FEASIBILITY CRITERION OF A PARTIAL

WORD:

A recursive algorithm is developed for checking

the feasibility of a partial word LK+1= (a1,

a2,…..,ak, ak+1) given that LK is a feasible partial

word. We will introduce some more notations

which will be useful in the sequel.

RI be an array where RI (i) =1, i  N

represents that the salesman is visiting

some city from city i, otherwise zero.

CI be an array where CI (i) =1, i  N

represents that the salesman is coming to city i

from some city; otherwise zero.

SW be an array where SW (i) is the city that

the salesman is visiting from city i, Sw(i)= 0

indicates that the salesman is not visiting any city

from city i.

L be an array where L (i) is the letter in the

ith position of a word.

GN be an array where GN(i) is the city in ith

grade,GN(i)=1 indicates that the salesman is

in ith grade.

Then for a given partial word LK = (a1,a2,…..,aK)

the values of the arrays RI, CI, SW, L, GNR and

GNC as follows.

RI(R (ai)) =1, i=1, 2, 3……..K

CI(C (ai)) =1, i=1, 2, 3……..K

SW(R (ai)) =C (ai), i=1, 2, 3……..K

L (i) =ai, i=1, 2, 3……..K

GNR(R(ai))=GN(R(ai))

GNC(C(ai))=GN(C(ai))

For example consider a sensible partial word L3=

(1, 2, 9) which is feasible. The array RI, CI, SW,

L, GNR and GNC takes the values represented in

the table-3 given below.

Table-3

 1 2 3 4 5 6

RI 0 1 0 1 0 1

CI 1 0 0 1 0 1

SW 0 6 0 1 0 4

L 1 2 9 - - -

GNR 0 1 0 2 0 3

GNC 1 0 0 2 0 3

The recursive algorithm for checking the

feasibility of a partial word LP is given as follows:

In the algorithm first we equate IX=0. At the end

if IX=1 then the partial word is feasible, otherwise

it is infeasible. For this algorithm we have RI, CI,

SW, TR=R (ap+1), TC=C (aP+1).

Algorithm-1:

STEP1 : IX=0

 TCX=TC

 GOTO 2

STEP 2 : IS (RI (TR) = 1) IF YES GOTO 8

 IF NO GOTO 3

STEP 3 : IS (CI (TC) = 1) IF YES GOTO 8

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7

,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

21
© 2015, AJCSE. All Rights Reserved.

 IF NO GOTO 4

STEP4 : IS GS (TR)) = GS (TC) IF YES GOTO STEP 8

 IF NO GOTO 5

STEP5 : IS (SW (TCX) = 0) IF YES IX=1 GOTO 8

 IF NO IK=SW (TCX) GOTO 6

STEP6 : IS (IK=TR) IF YES GOTO 7

 IF NO TCX=IK GOTO 5

STEP7 : IS (I=N) IF YES IX=1 GOTO 8

 IF NO GOTO 8

STEP8 : STOP

This recursive algorithm will be used as a

subroutine in the lexi-search algorithm. We start

the algorithm with a very large value, say, 9999 as

a trial value of VT. If the value of a feasible word

is known, we can as well start with that value as

VT. During the search the value of VT is

improved. At the end of the search the current

value of VT gives the optimal feasible word. We

start with the partial word L1= (a1) = (1). A partial

word Lp=Lp-1  (ap) where  indicates chain form

or concatenation. We will calculate the values of

V (Lp) and LB (Lp) simultaneously. Then two

cases arises (one for branching and other for

continuing the search).

1. LB (Lp) < VT. Then we check whether Lp

is feasible or not. If it is feasible we

proceed to consider a partial word of order

(p+1), which represents a sub block of the

block of words represented by Lp. If Lp is

not feasible then consider the next partial

word of order p by taking another letter

which succeeds ap in the pth position. If all

the words of order p are exhausted then we

consider the next partial word of order (p-

1).

2. LB (LP)  VT. In this case we reject the

partial word meaning that the block of

words with Lp as leader is rejected for not

having an optimal word and we also reject

all partial words of order p that succeeds

Lp.

Now we are in a position to develop lexi search

algorithm to find an optimal feasible word.

Algorithm 2: (Lexi-Search Algorithm)

The following algorithm gives an optimal feasible

word.

STEP 1 : (Initialization) The arrays SN, D, DC, R, C

and values of N, GN are made available RI, CI, SW,

L, GNR,GNC, V, LB are initialized to zero. The values

I=1, J=0, VT=9999, NZ=NNN –N, MAX=NZ-1

STEP 2 : J=J+1 IS (J>MAX) IF YES GOTO 11

 IF NO GOTO 3

STEP 3 : L (I) = J JA = J + N – I;

 IS (I = 1)

 IF YES V (I) = D (J) GOTO 3B

 IF NO GOTO 3A

STEP 3A: V (I) = V (I -1) + D (J)

 GOTO 3B

STEP 3B: LB (I) = V (I) + DC (JA) – DC (J)

 GOTO 4

STEP 4 : IS (LB (I)  VT) IF YES GOTO 11

 IF NO GOTO 5

STEP 5 : TR=R (J)

 TC=C (J)

 GOTO 6

STEP 6 : CHECK THE FEASIBILITY OF L (USING

ALGORITHM-1)

 IS (IX=0) IF YES GOTO 2

 IF NO GOTO 7

STEP 7 : IS (I=N) IF YES GOTO 10

 IF NO GOTO 8

STEP 8 : L (I) = J

 RI (TR) = 1

 CI (TC) = 1

 SW (TR) = TC

 GOTO 9

STEP 9 : I=I+1

 MAX=MAX+1

 GOTO 2

STEP10 : L (I) =J

 L (I) IS FULL LENGTH WORD AND IS FEASIBLE.

 VT=V (I), record L (I), VT,

 GOTO 13

STEP11 : IS (I=1) IF YES GOTO 14

 IF NO GOTO 12

STEP12 : I=I-1

 MAX=MAX+1

 GOTO 13

STEP13 : J=L (I)

 TR = R (J)

 TC = C (J)

 RI (TR) = 0

 CI (TC) = 0

 SW (TR) = 0

 GOTO 2

STEP14 : STOP

 END

The current value of VT at the end of the search is

the value of the optimal feasible word. At the end

if VT = 9999 it indicates that there is no feasible

solution.

 Search table:

The working details of getting an optimal word,

using the above algorithm for the illustrative

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

22
© 2015, AJCSE. All Rights Reserved.

numerical example are given in the Table-4. The

columns (1), (2), (3) and (4) gives the letters in the

first, second, third and fourth places respectively.

The corresponding V (I) and L B (I) are indicated

in the next two columns. The row R, C and T

gives the row, column and time indices of the

letter. The last column gives the remarks

regarding the acceptability of the partial words. In

the following table A indicates ACCEPT and R

indicates REJECT.

Table- 4: Search table

S.N 1 2 3 4 5 6 V LB R C REM

1 1 1 18 4 1 A

2 2 2 18 6 4 A

3 3 4 18 1 4 R

4 4 6 23 2 5 A

5 5 11 23 4 5 R

6 6 11 25 5 4 R

7 7 13 28 4 2 R

8 8 13 31 6 5 R

9 9 14 38 2 5 R

10 10 16 44 1 5 R

11 11 20 49 1 2 R

12 12 20 51 6 3 R

13 13 21 54 2 3 R

14 14 22 56 3 4 R

15 15 23 57 2 1 R

16 16 23 61 3 2 A

17 17 40 61 4 3 R

18 18 42 62 5 6 A

19 19 64 64 2 4 R

20 20 64 64 3 1 R

21 21 68 68 1 6 R

22 22 69 69 1 3 A=V

T=69

23 19 45 67 2 4 R

24 20 45 71 3 1 R>VT

25 17 23 66 4 3 R

26 18 27 71 5 6 R>VT

27 5 7 26 4 5 R

28 6 7 29 5 4 R

29 7 9 34 4 2 R

30 8 9 41 6 5 R

31 9 10 48 2 6 A

32 10 20 48 1 5 A

33 11 34 48 1 2 R

34 12 34 49 6 3 R

35 13 35 51 2 3 R

36 14 36 53 3 4 R

37 15 37 54 2 1 R

38 16 37 54 2 3 A

39 17 54 54 4 3 R

40 18 58 58 5 6 R

41 19 59 59 2 4 R

42 20 59 59 3 1 R

43 21 63 63 1 6 R

44 22 64 64 1 3 R

45 23 66 66 4 6 R

46 24 68 68 5 2 R

47 25 78 78 5 3 R>VT

48 17 37 58 4 3 R

49 18 41 63 5 6 R

50 19 42 64 2 4 R

51 20 42 68 3 1 R

52 21 46 73 1 6 R>VT

53 11 24 53 1 2 R

54 12 24 55 6 3 R

55 13 25 58 2 3 R

56 14 26 60 3 4 R

57 15 27 61 2 1 R

58 16 27 65 3 2 A

59 17 44 65 4 3 R

60 18 48 70 5 6 R>VT

61 17 27 70 4 3 R>VT

62 10 12 55 1 5 A

63 11 26 55 1 2 R

64 12 26 57 6 3 R

65 13 27 60 2 3 A

66 14 43 60 3 4 R

67 15 44 61 2 1 R

68 16 44 61 3 2 R

69 17 44 65 4 3 R

70 18 48 70 5 6 R>VT

71 14 28 62 3 4 R

72 15 29 63 2 1 R

73 16 29 67 3 2 A

74 17 46 67 4 3 R

75 18 50 72 5 6 R>VT

76 17 29 73 4 3 R>VT

77 11 16 61 1 2 A

78 12 30 61 6 3 R

79 13 31 64 2 3 A

80 14 47 64 3 4 R

81 15 48 65 2 1 R

82 16 48 65 3 2 R

83 17 48 69 4 3 R=VT

84 14 32 65 3 4 R

85 15 33 67 2 1 R

86 16 33 71 3 2 R>VT

87 12 16 62 6 3 R

88 13 17 67 2 3 A

89 14 33 67 3 4 R

90 15 34 68 2 1 R

91 16 34 72 3 2 R>VT

92 14 18 69 3 4 R=VT

93 3 3 24 1 4 R

94 4 5 29 2 5 A

95 5 10 29 4 5 R

96 6 10 32 5 4 A

97 7 17 32 4 2 R

98 8 17 35 6 5 R

99 9 18 42 2 6 R

100 10 20 48 1 5 R

101 11 24 53 1 2 R

102 12 24 55 6 3 A

103 13 39 55 2 3 R

104 14 40 57 3 4 R

105 15 41 58 2 1 R

106 16 41 58 3 2 A

107 17 58 58 4 3 R

108 18 62 62 5 6 R

109 19 63 63 2 4 R

110 20 63 63 3 1 R

111 21 67 67 1 6 R

112 22 68 68 1 3 R

113 23 70 70 4 6 R>VT

At the end of the search the current value of VT is

69 and it is the value of the optimal feasible word

L6 = (1, 2, 4,16, 18, 22). It is given in the 22nd row

of the search table. The array RI, CI, TI, SW, L,

GNR and GNC takes the values represented in the

Table-5 given below. The Pattern represented by

the above optimal feasible word is represented in

the following table-6.
Table – 5

 1 2 3 4 5 6

RI 1 1 1 1 1 1

CI 1 1 1 1 1 1

SW 3 5 2 1 6 4

L 1 2 4 16 18 22

GNR 1 1 2 2 3 3

GNC 1 1 2 2 3 3

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

23
© 2015, AJCSE. All Rights Reserved.

Table-6





























001000

100000

000001

000010

010000

000100

),(jiX

The tour represented by the above pattern is

[(1,3), (3,2), (2,5), (5,6),(6,4),(4,1)], where, the

salesman, from city 1 goes to city 3 (i.e., from

group 1 to group 2) , from city 3 goes to city 2

(i.e., from group 2 to group 1) , from city 2 goes

to city 5 (i.e., from group 2 to group 3) , from city

5 goes to city 6(i.e., from group 3 to group 3),

from city 6 goes to city 4(i.e., from group 3 to

group 2) and from city 4 goes to city 1(i.e., from

group 2 to group 1).

It also can be represented by

 1 3  2  5  641

Computational experience:

A Computer program for the above algorithm is

written in C language and is tested. Random

numbers are used to construct the cost matrix.

The following table-7 gives the list of the

problems tried along with the average CPU time

in seconds required for solving them. In the table

AT represents the CPU time to construct the

alphabet-table and ET represents the CPU time

taken for the search of a feasible word. The time is

represented in seconds. In the table-8 ‘n’ is the

number of cities.

Experiments are carried and by generating the

three different classes of random data sets, where

the three types of data sets are defined as follows:

Type 1: C (i, j) are uniformly random in [1,100]

Type 2: a) C (i, j) are uniformly random in [1,100]

 b) VT=0.85VT

Type 3: a) C (i, j) are uniformly random in [1,100]

 b)Max=(nxnxn)/3

And the results are tabulated in Table. For each

type, four data sets are tested. It is seen that time

required for the search (ET) of the optimal

solution is fairly less.

Table-7

In the above table it can be noticed that the

average CPU time for n=260 in Type 1 is

8.71seconds and for Type 2 it is 8.36 seconds. The

reduction in time is because the search for optimal

solution is made around 0.85VT. But in second

case also we are getting the same optimal solution.

In Type 3 the search is in 1/3 of the alphabet table,

so it takes less time and interestingly here also we

are getting the same optimal solution for these

problems.

ACKNOWLEDGEMENTS

The author expresses my deep sense of reverence

and gratitude to the research supervisor Prof. M.

Sundara Murthy, Department of Mathematics,

S.V.U. College of Engineering, Tirupati for

suggesting this problem for investigation. It is

solely due to his immense interest, competence

and exceptional guidance, critical analysis,

transcendent and concrete suggestions enlightened

discussions, which cumulatively are responsible

for the successful execution of this work.

REFERENCES

1. Bhavani, V. and Sundara Murthy,

M.(2005):Time-Dependent Traveling

Salesman Problem OPSEARCH 42, PP.

199-227.

2. Vladimir Dimitrijevic, Milan

Milosavljevic, Milan Markovic(1996):A

Branch and Bound algorithm for solving a

generalized traveling salesman problem,

UNIV.BEOGRAD.PUBL.ELEKTROTEH

N. FAK. Ser. Mat. 7, 31-35.

3. Henry-Labordere, A (1969) :The record

balancing problem-A dynamic

programming solution of a generalized

traveling salesman problem. Revue

Problem

dimensions

No. of prob’s

AT

 Total time taken(ET)

 TYPE 1 TYPE 2 TYPE 3

N MIN MAX AVG MIN MAX AVG MIN MAX AVG

20 4 0.10 5.24 5.98 5.50 4.98 5.53 5.17 4.71 5.38 5.05

160 4 0.27 7.52 7.86 7.72 6.31 6.87 6.53 6.20 6.76 6.51

260 4 0.62 8.41 8.92 8.71 8.09 8.51 8.36 7.35 7.70 7.49

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

Balakrishna et al.\ A Lexi Search Approach To Generalized Travelling Salesman Problem

24
© 2015, AJCSE. All Rights Reserved.

Francaise D Informatique De Recherche

Operationnelle 3 (NB2), 43-49

4. Laporte, G, Asef-Vaziri, A and

Sriskandararajah, C (1996): Some

applications of the generalized traveling

salesman problem. Journal of the

Operational Research Society 47 (12)

1461-1467

5. Laporte, G, Mercure, H and Nobert, Y

(1985):Finding the shortest Hamiltonian

circuit through n clusters: A Lagrangian

approach, Congressus Numerantium

48,277-290

6. Laporte, G, Mercure, H and Nobert,

Y(1987):Generalized travelling salesman

problem through n sets of nodes: the

asymmetrical case. Discrete Appl. Math,

18, 185-197

7. Laporte,GandNobert,Y.(1983):Generalized

traveling salesman problem through n-sets

of nodes-An integer programming

approach, INFOR 21 (1) 61-75.

8. Pandit,S.N.N.andRajbhougshi(1976):Restr

icted TSP through n sets of nodes. Paper

presented at the 9th Annual Convention of

ORSI, Calcutta

9. Pandit, S.N.N. and Srinivas, K(1962):A

Lexisearch algorithm for traveling

Salesman problem, IEEE, 2521-2527.

10. Snyder, L.V and Daskin, M.S.(2006):A

random-key genetic algorithm for the

generalized traveling salesman problem

Technical Report 04T-018, Dept. of

Industrial and Systems Engineering,

Lehigh University, Bethlehem, PA, USA.

11. Sundara Murthy, M(1979):Combinatorial

Programming - A Pattern Recognition

Approach. PhD, Thesis REC, Warangal,

India

A
JC

S
E

,
M

a
y-

Ju
n
e,

 2
0
1
7
,
V

o
l.

 2
,
Is

su
e

3

	*Dr. U. Balakrishna1
	*Professor of Mathematics, Department of Science & Humanities, Sreenivasa Institute of Technology and Management Studies, Chittoor
	ABSTRACT
	MATHEMATICAL FORMULATION:
	CONCEPTS AND DEFINITIONS:
	FEASIBILITY CRITERION OF A PARTIAL WORD:
	Algorithm-1:
	Search table:
	Computational experience:

