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ABSTRACT
One of the primary aspects of intelligent heating, ventilation, and air conditioning (HVAC) management 
that is changing at a rapid rate is digital twin (DT) technology. It achieves this by creating virtual replicas 
of the physical systems which combine real-time sensor data, physics-based models, and artificial 
intelligence-based analytics. The current paper includes an overview of the novel application of DT in 
the HVAC performance monitoring, energy optimization, and fault detection and diagnosis (FDD). The 
system visibility is significantly increased, the predictive maintenance is facilitated, and the operational 
reliability is enhanced with the assistance of the DT-enabled real-time monitoring. Different approaches 
of FDD are discussed, including analytical models, knowledge-based methods, and the use of the 
data-driven approach to machine learning methods the application of DTs in degradation monitoring, 
indoor environmental quality monitoring, and even in the prediction of the remaining useful life can 
be considered an indicator of the ability of DTs to reduce energy consumption, detect anomalies in the 
system at an early stage, and improve the quality of decisions made. One of the issues is being considered 
alongside the potential research directions that would bring enabling scalability, automated, and highly 
adaptable DT solutions to the next generation of HVAC systems.

Key words: Digital twin, energy optimization, fault detection and diagnosis, heating, ventilation, and 
air conditioning system, predictive maintenance, real-time performance monitoring

INTRODUCTION

Digital twin (DT) technology is an innovative 
concept of the contemporary control system 
of the building, which provides a real-time 
virtual representation of the physical assets 
that represent their behavior, performance, and 
interactions.[1,2] The heating, ventilation, and air 
conditioning (HVAC) systems of DTs, specifically, 
are a combination of sensor data, simulation 
models, and machine learning algorithms that 
use the data to create an ever-changing portrait 
of how the system functions. Through this, it is 
possible to have engineers and facility managers 
view the state of the system, perform scenario 
testing, and make predictions of the outcomes 
of the system operation with a certain degree of 
accuracy.[3,4] Basic layer is the introduction of DT 
technology that allows highly advanced analytics 
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and intelligent decision-making because buildings 
are increasingly becoming more connected and 
intelligent.
The primary role of HVAC systems is to ensure 
the comfort and safety of people in many 
different types of buildings.[5,6] Standard HVAC 
systems aim to do three things: regulate indoor 
temperatures (by means of cooling and heating), 
keep relative humidity levels constant, and with 
a DT, real-time population monitoring becomes 
much more effective. By the minute data transfer 
from HVAC components to the digital model, real-
time monitoring gives almost immediate insight 
into the system’s behavior and the performance 
trends.[7] Consequently, it is possible to find 
very quickly when the system deviates from the 
optimal operation due to environmental changes, 
equipment wear, or wrong control settings.[8,9] DTs 
and real-time monitoring experience enhance the 
visibility of the system, so, a self-perpetuating loop 
can be created that enables the implementation 
of corrective measures in a fast fashion. Thus, 
real-time performance monitoring is made the 
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operational core per se, since it is the centerpiece 
of DT-based HVAC systems.
The predictive fault detection ability. With the 
help of advanced analytics and machine learning, 
the DT can identify an abnormal behavior, 
identify a sign of faults, and anticipate, even, 
it appears, the most implausible failure, well 
before the system performance is impacted.[10,11] 
Predictive fault detection transforms the lifecycles 
of the conventional HVAC maintenance that 
tends to be reactive or scheduled into condition-
based strategies.[12,13] It is a type of real-time-
based telecommunication between the predictive 
analytics and real-time monitoring that enables 
not only the DT to display the present states of 
the system but also makes it possible to predict 
the future dangers. The predictive aspect of DTs 
considerably contributes to system safety and 
makes fewer maintenance expenses.
HVAC efficiency and optimization are a system 
management based on DT. The DT in essence 
is an energy conservation and performance 
enhancement tool, as it achieves this by pointing 
out inefficiencies, predicting faults, and suggesting 
the best operating conditions. Reduced faults lead 
to better energy use, longer equipment life, and 
improved indoor environmental quality (IEQ).[14,15] 
Furthermore, the DT’s optimization suggestions 
can be utilized to manage tactics, resulting in an 
iterative process of improvement.[16] Therefore, 
a holistic strategy for achieving high-efficiency 
HVAC operation is to employ DT technology 
in conjunction with real-time monitoring and 
predictive mistake detection.

Structure of the Paper

The following is the outline of the paper: Section 
II HVAC system DT architecture, Section III DTs 
for fault detection and diagnosis (FDD), Section 
IV using a DT in HVAC systems, Section V 
review of the literature, and Section VI findings 
and future directions.

DT ARCHITECTURE FOR HVAC 
SYSTEMS

DT architecture is a complicated idea that 
combines different types of technology to make a 
DT system and keep it running smoothly. Common 
components of a DT include a physical system 

(PS), a virtual system (VS), service systems 
(SSs), and DT data (DTD). Everything down to 
the hardware, materials, and procedures is called 
the PS. By including models that stand in for the 
real system in a digital setting, the VS makes it 
easier to combine the real and virtual worlds, 
as illustrated in Figure 1. The transmission of 
information between physical and VSs is facilitated 
by communication architecture in SSs.[17] Finally, 
the datasets and information shared inside the DT 
framework are referred to as DTD.
The capability improves decision-making 
among three primary approaches: Diagnosis, the 
evaluation of past decisions; monitoring, which 
is the oversight and control of current processes; 
and prognosis, which is the forecasting of future 
behaviors and outcomes.

DT Layer

This architecture is composed of three fundamental 
components: The physical space, the virtual 
space, and the connectivity model (as indicated in 
Figure 2). The main secret of DT development is 
the creation of a two-way data channel between 
the real object and the virtual analog of it. Internet 
of things (IoT) sensors are used to gather real-time 
data of physical building projects.[18] Not only 
are these data used to generate correct numerical 
models but they are also manipulated to model how 
physical objects behave in specific circumstances. 
The continuous process of gathering and analyzing 
the information contributes to the development of 
these models so that the DT can always successfully 
emulate its physical equivalent. DTs architecture 
with simulation models, or data models, is used 
to make scientifically accurate copies of actual 
PSs of the real world. It demands the use of 
technologies including artificial intelligence (AI), 
machine learning, data mining, etc., to process 
these data. Finally, the user interacts with these 
data by means of visualization.
These methods have been theorized as a DT 
system architecture having five development 
layers, including data collection layer, data transfer 
layer, data integration layer, data visualization 
layer, and services. The data collection techniques 
and existing datasets are considered in the data 
collection layer. Instead, network technologies, 
communication protocols, and data transfer 
mechanisms are covered by the transmission 
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layer. The digital modeling layer is concerned with 
the techniques of quantifying the properties of 
physical entities and techniques of building virtual 
models. The data integration layer combines a 
diverse range of technologies that facilitate data 
storage, data and model integration, processing 
and analysis, visualization and use of AI, machine 
learning, and simulation engines.

Smart HVAC Control System

The combination of the Internet of Things (IoT), 
artificial intelligence (AI), and real-time data 
analytics has transformed the way HVAC systems 
are managed, making them more responsive, 
energy-efficient, and adaptable to dynamic 
operating conditions. Conventional HVAC 
systems were based on pre-programmed and set 
timetables, thus, tended to consume unnecessary 
energy and unreliable indoor comfort. Unlike 
traditional “blind” control approaches, IoT-based 
sensor networks monitor key environmental 

conditions in real time, including temperature, 
humidity, carbon dioxide (CO₂) levels, airflow, 
and occupancy, and can be seamlessly integrated 
into intelligent building management systems. 
A significant area of IoT use in HVAC is demand-
controlled ventilation, which constitutes a 
dynamically changing airflow measurement in 
real-time occupancy and air quality to reduce 
the number of unnecessary energy consumed by 
the equipment. AI goes a step further and allows 
predictive analytics and machine learning models 
to predict any changes in the indoor climate and 
adjust settings. Convolutional neural networks 
(CNNs), bidirectional long short-term memory 
model, and model predictive control can be used 
to forecast the change in temperature and reduce 
energy usage by up to 17% using intelligent 
preemptive adjustments. HVAC energy savings 
can be achieved using reinforcement learning–
based control methods, such as Soft Actor–Critic 
(SAC) and Proximal Policy Optimization (PPO), 
which have been demonstrated to reduce energy 

Figure 2: Layers of digital twin

Figure 1: Architecture of digital twin
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expenditure by up to 18%. Furthermore, predictive 
maintenance which is an AI-based implementation 
has been a game-changer, where past and real-
time diagnostic is used to identify potential 
malfunctions in the system even before they take 
place and therefore, minimizing downtime and 
repair expenses.

DT Technology in HVAC Systems

DTs are transforming HVAC management by 
establishing a direct, data-driven connection 
between physical systems (PSs) and intelligent 
control mechanisms. The DTs, unlike the 
traditional building management system (BMS), 
offer a dynamic and real-time virtual representation 
of an HVAC system based on their reliance on a 
manual monitoring system and set rules.[19] These 
models constantly combine real-time data about 
temperature, humidity, flow of air, and occupancy, 
and predictive maintenance, optimization of 
performance, and testing of scenarios are possible, 
but the real world is not disrupted. Using the 
methods of the latest modeling technologies, 
one can be able to test various strategies using 
building information modeling (BIM) and AI-
driven models and implement them with certainty 
that the facility is energy-efficient and generates 
minimum wastage. In contrast to static BMS, DTs 
change dynamically, responding to variations in 
the weather, occupancy levels, and energy prices 
to achieve optimal system operation. To maintain 
a correct real-time synchronization of the physical 
HVAC systems and the virtual one, it is necessary 
to have good sensor networks, powerful computing 
power, and precise model calibration.

FDD IN DTS

FDD

Early fault diagnosis and fault detection are an 
urgent type of predictive maintenance which obtains 
more and more attention in the management of 
facilities. Data-driven fault detection and diagnosis 
(DFDD) is the process of identifying anomalies in 
the behavior of building systems and components 
using the data analysis tools and algorithms, before 
they lead to major failures.[20] Through the detection 
of errors at the initial stage, facility managers are 
able to deal with them before it escalates into 

expensive repair or replacement, as indicated in 
Figure 3. The analytical-based techniques are based 
on mathematical models and physical laws that 
make use of faults and abnormalities in building 
systems. Knowledge-based approaches on the other 
hand apply expert knowledge and rules to identify 
errors and make decisions.

Analytical-based methods
Analytical approaches to FDD begin with 
fundamental concepts and a physical knowledge 
of the system; this knowledge is then used to 
construct a mathematical model that compares 
measured data with residuals to identify errors. 
These techniques, which can be classified into 
simplified and complex physical models, are 
helpful for reducing errors in smart building 
routine operations and maintenance.
•	 Detailed physical models: Detailed 

physical models, including feedforward 
and autoregressive exogenous models, can 
mimic both healthy and broken states of the 
system; they just necessitate an exhaustive 
knowledge of the physical interactions among 
all constituent parts

•	 Simplified physical models: Physical models 
that are simplified. A variety of HVAC systems 
can be enhanced in terms of system reliability, 
energy consumption, and maintenance costs 
by utilizing lumped parameter approaches and 
simplified assumptions to convert coupled 
space partial differential equations into 
ordinary differential equations.

Knowledge-based method
Knowledge-based methods are often used when 
it is too expensive or hard to describe a system 
physically or mathematically or when there is not 
enough data to go around. In addition, they work 
well when modeling requires specific knowledge 
or when the system has few inputs, outputs, and 
states. There are various types of knowledge-
based approaches. Some of these include expert 
systems, causal analysis, fuzzy logic, and first-
principle method.
•	 Causal analysis: Fault tree diagrams, structural 

graphs, and signed directed graphs are some of 
the tools used for causal analysis in FDD

•	 Fuzzy logic: Fuzzy logic, a kind of Boolean 
logic, can be used to identify instances of 



AJCSE/Oct-Dec-2025/Vol 10/Issue 4� 5

Mehta: Review of Digital Twin Applications for Heating, Ventilation, and Air Conditioning Performance Monitoring and 
Fault Detection

unusual power usage by designing fan coil units. 
A clustering technique, error-free comparisons 
of neighborhood and average values, and 
statistical analysis of defect identification are 
all part of the suggested approach

•	 First-principle-based method: Rule-based 
approaches based on first-principle knowledge 
of physical processes in systems, such mass and 
energy, are known as first-principle models. 
Mathematical models of the HVAC system’s 
physical parts and their interactions with one 
another are created using these techniques. 
These parts include heat exchangers, fans, and 
pumps.

Data-driven methods
Data-driven methods are those that rely on data 
rather than explicit mathematical or physical 
models of the system to construct models or 
generate predictions.[21] On the contrary, these 
approaches rely on statistical or machine learning 
methods to discover data patterns and linkages, 
which then inform predictions. Three distinct 
types of data-driven approaches exist: Supervised, 
semi-supervised, and unsupervised learning.
•	 Supervised methods: The goal of supervised 

machine learning is to train a model to 
recognize patterns in data by adjusting weights 
in training datasets that have labelled inputs 
and outputs. Both classification and regression 
fall under the umbrella of supervised learning. 
A few examples of classification algorithms 
are supervised neural networks, K-nearest 
neighbors, DT, and support vector machine 
(SVM). Polynomial, logistical, and linear 
regression are all types of regression methods

•	 Semi-supervised methods: Semi-supervised 
procedures find application when training 

set is scarce and erroneous training data are 
not abundant to FDD in HVAC buildings. 
These approaches include learning a model 
to identify and diagnose faults with a limited 
quantity of labelled data, consisting of both 
normal and faulty system behavior and a 
significant quantity of unlabeled data. The 
common methods of exploiting labeled and 
unlabeled data in an effective way include the 
clustering technique, active learning, and the 
generative models

•	 Unsupervised methods: Unsupervised machine 
learning is a kind of machine learning which 
is able to analyze and categorize unlabeled 
datasets.[22] This comes in handy, especially 
in real-world complex systems like HVAC 
systems, where there may be a difficulty 
or cost in getting correctly labeled data to 
train on. Typical non-supervised algorithms 
are clustering, autoencoders, generative 
adversarial networks, principal component 
analysis, and association rule mining.

Hybrid method
Hybrid approaches within the FDD are the 
combination of analytical, knowledge-based, and 
data-driven approaches to provide more accurate 
and reliable FDD outcomes. The hybrid approaches 
have the ability to capitalize and give support to 
the strengths of each technique to overcome the 
weaknesses and achieve a better performance 
of FDD. A problem-solving method uses open-
loop rules for lambda tuning to automate control 
hunting. A commercial FDD program made use 
of the algorithm. Suboptimal performance and 
premature HVAC equipment failure can be caused 
by control hunting, a prevalent issue in commercial 
buildings.

Figure 3: Classification of fault detection and diagnosis methods
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FDD Workflow of DT Framework

FDD process flow comprises gathering relevant 
data from target building systems, analyzing that 
data, creating models, and finally, deploying those 
models. Figure 4 shows that the majority of FDD 
studies have been on data modelling and how to 
use it for fault classification with supervised or 
unsupervised FDD methods.
A major roadblock to automating FDD is the data 
comprehension, preparation, and analysis that 
frequently necessitate human involvement. To 
automate FDD and reduce human intervention, 
it is necessary to ensure that computational 
systems can interpret ad hoc knowledge 
learned from real-time data using statistical and 
symbolic artificial intelligence (AI) techniques, 
in addition to existing ontological knowledge.[23] 
The FDD process makes use of contextual and 
temporal knowledge in relation to the sensor 
dimensions that are devoted to the identification 
of individual defects. This research adds fault 
tags to the brick ontology, which help identify 
the chosen sensors with machine-readable fault 
tags, so keep the new information for future 
reference. The data pipelines get the real-time 
data that target particular faults ready to be used 
by the FDD by annotating it with brick model 
fault tags.

APPLICATION OF DTS IN HVAC 
PERFORMANCE MONITORING

DT technology is a leading-edge tool that is used to 
improve the performance of HVAC systems. A DT 
basically models HVAC parts, the system, or even 
the whole building atmosphere in a computer, 
thus it becomes possible to have uninterrupted 
checking, review, and tuning performance 
assessment but also predictive analytics.

Real Time Performance Monitoring

DTs allow for performance monitoring in real-time 
as they keep updating the data from the physical 
HVAC systems to the virtual ones. Various 
sensors and IoT devices installed in the system 
gather essential operational parameters such as 
temperature, humidity, airflow rates, pressure 
differentials, equipment status, and energy 
consumption and then send them to the DT platform. 
The digital replica takes in this information and 
also has a look at the best operating conditions or 
the results of the predictive models.

Energy Consumption Analysis and 
Optimization

DTs are essential in the assessment and subsequent 
enhancement of the energy consumption of 
HVAC systems. Through nonstop data collection 
of equipment power use, cooling/heating loads, 
occupancy, and environmental conditions, the DT 
is capable of pinpointing the areas where energy 
inefficiencies are emerging, it could be situations 
such as wrong setpoints, excessive cycling, or poor 
heat transfer performance.[24] With DTs, operators 
have the freedom to experiment with and fine-
tune various control strategies such as temperature 
setpoint adjustment, ventilation rate modification, 
or operation schedule changing in a virtual 
environment before the real system implementation.

Predictive Maintenance and Degradation 
Tracking

DTs make it possible for the HVAC system to stay 
in shape with predictive maintenance through the 
ongoing visual check of the system parts and the 
identification of the first signs of wear and tear. 
The DT, by analyzing vibration, temperature, 
pressure, and airflow patterns sensor data, can 

Figure 4: Fault detection and diagnosis workflow based on the digital twin analytical framework
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isolate a number of different abnormalities such 
as coil fouling, filter clogging, refrigerant leaks, 
or declining equipment efficiency.
•	 Condition-based monitoring using DTs
	 Continuous monitoring of equipment is 

critical for assessing its operational condition, 
particularly by tracking parameters such as 
vibration, pressure, temperature, and airflow, 
which enables early detection of abnormal 
behavior and performance degradation.

•	 Remaining useful life prediction and 
maintenance scheduling

	 DTs employ both data-driven and physics-
based models to locate the time till which 
the HVAC parts are usable, thus giving 
maintenance staff the time for action to be 
most efficient in both cost and effectiveness.

IEQ Assessment

HVAC systems are major factors that determine 
indoor comfort, productivity, and the general 
health of the occupants. DTs enable a thorough 
measurement of IEQ through the simulation and 
evaluation of various parameters that include 
temperature distribution, humidity levels, air quality 
indices (e.g., CO2, Volatile organic compounds 
(VOCs), particulate matter), and ventilation 
effectiveness in different zones of a building.
a.	 DTs are always matching real-time IEQ 

measurements with well-established standards, 
thus they are very helpful in maintaining the 
best possible thermal comfort and indoor air 
quality for the users of the building

b.	 By means of airflow simulations and virtual 
testing, DTs locate the places where the 
ventilation is insufficient, the air is stagnant, or the 
distribution is not even, thus they make it possible 
to be very precise in the targeted improvements

c.	 DT may find temperature imbalances, hot/
cold spots, or humidity deviations, which 
is enabling the facility managers to make 
adjustments to the system for a better level of 
occupant comfort.

FDD Support

DTs improve the effectiveness of FDD in HVAC 
systems by constantly checking performance data 
for the real system against the expected behavior of 
the model departure from the norm is detected an 

unusual temperature, a reduced airflow, a pressure 
imbalance, or even an irregular energy use, the 
DT not only locates the fault but also identifies its 
cause. By integrating physics-based models with 
data-driven algorithms, the DT is able such as a 
fault in the sensor, the leakage of the refrigerant, 
coil fouling, or a malfunction of the equipment.

LITERATURE OF REVIEW

The research works have been done to implement 
DT technology in the HVAC sector and other 
intelligent systems. Table 1 provides an organized 
comparison of the works usage of DTs for 
fault detection, predictive maintenance, energy 
optimization, and system-level monitoring 
challenges and limitation.
In Rastogi et al., 2025, DT technology, a virtual 
representation of an electric vehicle (EV), integrates 
real-world data with simulations, allowing for 
continuous analysis, proactive maintenance, and 
better decision-making which has emerged as 
a game changer in automotive industry. In this 
research, the authors have created a DT of an 
EV and its Battery Management System using 
Simulink, incorporating real-world fluctuations, 
potential errors, and system faults development 
of the proposed hybrid temporal-spatial attention 
network, a deep learning model that integrates 
CNN. Critical issues such as overheating, sensor 
malfunctions, battery wear, and motor failures 
were identified by the model efficiently.[25]

In Nagy et al., 2025, real-time DT technology, 
the simulation reproduces subsystem behavior 
with high fidelity, offering valuable insights into 
system-level power dynamics and energy usage. 
The results demonstrate that DT-based modeling 
is highly effective for evaluating and forecasting 
electric power consumption, and it holds significant 
potential for predictive diagnostics. In particular, 
the ability to replicate electrical subsystems in 
real time enables proactive monitoring and failure 
prediction for safety-critical components–areas 
where traditional diagnostic tools may fall short 
due to increasing system complexity.[26]

Ababsa et al., 2024 investigated the application of 
Digital Twin (DT) technology for enhanced fault 
diagnosis in smart buildings, with the objective 
of optimizing energy performance. Indeed, the 
emergence of DTs represents a significant advance 
in this field, as they enable the monitoring and 
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regulation of various systems as HVAC. They can 
also analyze the data generated by such systems to 
detect possible faults and even make predictions 
to anticipate potential problems. Nevertheless, 
managing the interoperability of heterogeneous 
data remains a challenge to achieve an operational 
and efficient DT. This study considers the fault 
detection and diagnosis (FDD) process for building 
HVAC systems as a representative use case.[27]

In Tian et al., 2024, fault detection method based 
on DT and one-class SVM (OCSVM) optimized by 
clonal selection is proposed. First, the cubic spline 
interpolation method is used to fill in missing data. 
To tackle the issue of data imbalance, a one-class 
support vector machine (OCSVM) is employed. 
In addition, the clonal selection algorithm is used 
to optimize the OCSVM hyperparameters, thereby 
improving fault detection accuracy. Finally, to 

address visualization issues, DT technology is 
used to visualize the dust removal system, offering 
higher monitoring accuracy compared to traditional 
methods and allowing users to intuitively understand 
the environmental conditions, facilitating time.[28]

In Abrazeh et al., 2023, a DT for an HVAC 
system, which stands for multi-input multi-output 
nonlinear, is created and studied. Integrating 
hardware-in-loop (HIL) and software-in-loop 
(SIL) helps to create the concept of DT control 
in a clear manner. Integrating the HIL and SIL 
controllers with a nonlinear integral backstepping 
(NIB) model-free control technique allows for 
HVAC system control without dynamic feature 
identification. The measured data are used to 
update the virtual controller’s NIB controller 
coefficients using deep reinforcement learning 
(DRL). Using a multi-objective method, the DRL 

Table 1: Comparative analysis of literature review of DT in hvac monitoring and fault detection
Author (s), 
year

Study on Key findings Application Limitations Future work

Rastogi et al., 
2025

DT of EV and battery 
management system 
using Simulink

DT integrates real‑world 
data with virtual 
simulations. HTSAN using 
CNN detects faults like 
overheating, sensor errors, 
battery wear, motor failures.

Automotive 
industry; EV battery 
management; fault 
detection; predictive 
maintenance.

Real‑world data 
variability and system 
complexity may affect 
model robustness; 
computational load of 
HTSAN.

Enhance generalization 
across different EV 
models; improve 
real‑time fault detection 
accuracy integrate more 
diverse sensor data.

Nagy et al., 
2025

Real‑time DT 
modeling of electrical 
subsystems

High‑fidelity simulation 
replicates subsystem 
behavior strong potential 
for predictive diagnostics in 
safety‑critical systems.

Electric power 
systems; subsystem 
monitoring; energy 
forecasting; predictive 
diagnostics.

High computation 
required for real‑time 
high‑fidelity simulations; 
integration challenges 
with legacy systems.

Improve scalability 
integrate AI‑based 
prediction; apply 
DTs to more complex 
multi‑system 
architectures.

Ababsa et al., 
2024

An HVAC DT for 
Problem Finding in 
Intelligent Buildings

The HVAC system may be 
optimised and monitored 
in real‑time with the use 
of DTs. Highly efficient at 
predicting and detecting 
faults

Smart building 
management; 
HVAC FDD; energy 
optimization.

Data interoperability 
issues; dependency on 
high‑quality sensor 
networks.

Develop standardized 
data frameworks 
improve cross‑platform 
compatibility for smart 
building systems.

Tian et al., 
2024

DT–based fault 
detection using 
OCSVM optimized 
by CSA

Missing data filled using 
cubic spline interpolation. 
CSA optimizes OCSVM 
hyperparameters improving 
detection. DT enables 
intuitive visualization of 
dust removal system

Industrial dust 
removal systems; 
predictive fault 
detection; real‑time 
visualization.

Sensitive to data quality 
and imbalance; high 
computational cost of 
CSA optimization.

Extend method to other 
industrial systems 
integrate deep learning 
for improved anomaly 
detection.

Abrazeh 
et al., 2023

DT of a MIMO 
non‑linear HVAC 
system using HIL + 
SIL and DRL

Developed DT combining 
HIL and SIL for HVAC 
control NIB model‑free 
control.

Advanced 
HVAC control; 
robotics‑inspired 
model‑free controllers; 
DRL‑based adaptive 
HVAC optimization.

DRL training requires 
significant time and 
data; model complexity; 
potential instability in 
early learning stages.

Apply to larger building 
systems integrate 
renewable energy‑based 
HVAC; enhance 
controller robustness.

Haigang 
et al., 2023

BIM + MR + DT for 
HVAC Maintenance

BIM + MR improves 
remote visualization 
and troubleshooting DT 
enhances fault diagnosis and 
maintenance efficiency.

HVAC maintenance; 
MR‑based training; 
immersive repair 
guidance; remote 
collaboration.

MR hardware cost; 
alignment and tracking 
accuracy; adoption 
difficulty for technicians.

Improve MR accuracy 
integrate AI for 
automated diagnostics; 
expand system to 
multi‑building facilities.

EV: Electric vehicle, HTSAN: Hybrid temporal spatial attention network, CNN: Convolutional neural networks, FDD: Fault detection and diagnosis, OCSVM: One‑class 
support vector machine, CSA: Clonal selection algorithm, MIMO: Multi‑input multi‑output, HIL: Hardware‑in‑loop, SIL: Software‑in‑loop, HVAC: Heating, ventilation, 
and air conditioning, NIB: Nonlinear Integral backstepping, BIM: Building information modeling, MR: Mixed reality, AI: Artificial intelligence, DRL: Deep reinforcement 
learning, DT: Digital twin



AJCSE/Oct-Dec-2025/Vol 10/Issue 4� 9

Mehta: Review of Digital Twin Applications for Heating, Ventilation, and Air Conditioning Performance Monitoring and 
Fault Detection

algorithm designs the NIB controllers in the HIL 
and SIL for the HVAC system’s temperature and 
humidity.[29]

In Haigang et al., 2023, the building’s air 
conditioning system fault diagnosis process is 
frequently hindered by on-site work collaboration 
factors, leading to low fault repair efficiency, 
and the operation and maintenance of HVAC 
system equipment is often complicated because 
some of the equipment installation locations are 
hidden within the building. In response to the 
aforementioned issues, it is recommended to 
leverage DT technology to augment the interaction 
capabilities of BIM with mixed reality (MR) during 
the maintenance of HVAC system equipment. The 
goal of developing the BIM+MR fault diagnosis 
system was to enhance the DT technology-based 
HVAC system equipment maintenance process by 
facilitating remote visualization engagement in an 
immersive environment.[30]

CONCLUSION AND FUTURE WORK

FDDs are critical to the construction of facilities 
because they are complex and require a smooth 
and effective monitoring of maintenance, 
HVAC performance, and fault detection. DTs 
improve the visibility of systems and enable the 
ongoing system performance assessment and the 
early identification of system malfunctions by 
establishing the real-time relationship between 
the real and virtual HVAC systems. The high 
diagnostic accuracy and the reduced amount of 
manual intervention were brought about by the use 
of analytical, knowledge-based, and data-driven 
FDD techniques incorporated in DT frameworks. 
Furthermore, real-time monitoring provided by 
DT enhances the understanding of the system 
behavior in various environmental and operating 
conditions, and predictive maintenance capabilities 
help minimize the downtime and increase the 
equipment lifespan provided by the DT-based 
HVAC systems is significantly better compared 
to the traditional monitoring and maintenance 
models, thus making the DTs a groundbreaking 
technology of an intelligent and highly responsive 
system to manage the building. Future work will 
DT frameworks, enhancing integration of multi-
source data and application of advanced machine 
learning techniques for automated fault diagnosis 
and prognostics. Besides, the use of MR, edge 

computing, and adaptive control strategies is also 
likely to be beneficial in real-time responsiveness 
and user interaction.Future research should focus 
on expanding DT applications to multi-building 
ecosystems, renewable energy–integrated 
HVAC systems, and autonomous smart-building 
platforms. Resolving these issues will speed up 
the implementation of highly sophisticated and 
smart DT solutions for HVAC operations.
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