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ABSTRACT

One of the primary aspects of intelligent heating, ventilation, and air conditioning (HVAC) management
that is changing at a rapid rate is digital twin (DT) technology. It achieves this by creating virtual replicas
of the physical systems which combine real-time sensor data, physics-based models, and artificial
intelligence-based analytics. The current paper includes an overview of the novel application of DT in
the HVAC performance monitoring, energy optimization, and fault detection and diagnosis (FDD). The
system visibility is significantly increased, the predictive maintenance is facilitated, and the operational
reliability is enhanced with the assistance of the DT-enabled real-time monitoring. Different approaches
of FDD are discussed, including analytical models, knowledge-based methods, and the use of the
data-driven approach to machine learning methods the application of DTs in degradation monitoring,
indoor environmental quality monitoring, and even in the prediction of the remaining useful life can
be considered an indicator of the ability of DTs to reduce energy consumption, detect anomalies in the
system at an early stage, and improve the quality of decisions made. One of the issues is being considered
alongside the potential research directions that would bring enabling scalability, automated, and highly
adaptable DT solutions to the next generation of HVAC systems.

Key words. Digital twin, energy optimization, fault detection and diagnosis, heating, ventilation, and

air conditioning system, predictive maintenance, real-time performance monitoring

INTRODUCTION

Digital twin (DT) technology is an innovative
concept of the contemporary control system
of the building, which provides a real-time
virtual representation of the physical assets
that represent their behavior, performance, and
interactions.!?) The heating, ventilation, and air
conditioning (HVAC) systems of DTs, specifically,
are a combination of sensor data, simulation
models, and machine learning algorithms that
use the data to create an ever-changing portrait
of how the system functions. Through this, it is
possible to have engineers and facility managers
view the state of the system, perform scenario
testing, and make predictions of the outcomes
of the system operation with a certain degree of
accuracy.’ Basic layer is the introduction of DT
technology that allows highly advanced analytics
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and intelligent decision-making because buildings
are increasingly becoming more connected and
intelligent.

The primary role of HVAC systems is to ensure
the comfort and safety of people in many
different types of buildings.*® Standard HVAC
systems aim to do three things: regulate indoor
temperatures (by means of cooling and heating),
keep relative humidity levels constant, and with
a DT, real-time population monitoring becomes
much more effective. By the minute data transfer
from HVAC components to the digital model, real-
time monitoring gives almost immediate insight
into the system’s behavior and the performance
trends.l”? Consequently, it is possible to find
very quickly when the system deviates from the
optimal operation due to environmental changes,
equipment wear, or wrong control settings.*¥ DTs
and real-time monitoring experience enhance the
visibility of the system, so, a self-perpetuating loop
can be created that enables the implementation
of corrective measures in a fast fashion. Thus,
real-time performance monitoring is made the
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operational core per se, since it is the centerpiece
of DT-based HVAC systems.

The predictive fault detection ability. With the
help of advanced analytics and machine learning,
the DT can identify an abnormal behavior,
identify a sign of faults, and anticipate, even,
it appears, the most implausible failure, well
before the system performance is impacted.['®!!]
Predictive fault detection transforms the lifecycles
of the conventional HVAC maintenance that
tends to be reactive or scheduled into condition-
based strategies.'>!*! It is a type of real-time-
based telecommunication between the predictive
analytics and real-time monitoring that enables
not only the DT to display the present states of
the system but also makes it possible to predict
the future dangers. The predictive aspect of DTs
considerably contributes to system safety and
makes fewer maintenance expenses.

HVAC efficiency and optimization are a system
management based on DT. The DT in essence
is an energy conservation and performance
enhancement tool, as it achieves this by pointing
out inefficiencies, predicting faults, and suggesting
the best operating conditions. Reduced faults lead
to better energy use, longer equipment life, and
improved indoor environmental quality (IEQ).!'*!]
Furthermore, the DT’s optimization suggestions
can be utilized to manage tactics, resulting in an
iterative process of improvement.!'® Therefore,
a holistic strategy for achieving high-efficiency
HVAC operation is to employ DT technology
in conjunction with real-time monitoring and
predictive mistake detection.

Structure of the Paper

The following is the outline of the paper: Section
II HVAC system DT architecture, Section III DTs
for fault detection and diagnosis (FDD), Section
IV using a DT in HVAC systems, Section V
review of the literature, and Section VI findings
and future directions.

DT ARCHITECTURE FOR HVAC
SYSTEMS

DT architecture is a complicated idea that
combines different types of technology to make a
DT system and keep it running smoothly. Common
components of a DT include a physical system
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(PS), a virtual system (VS), service systems
(SSs), and DT data (DTD). Everything down to
the hardware, materials, and procedures is called
the PS. By including models that stand in for the
real system in a digital setting, the VS makes it
easier to combine the real and virtual worlds,
as illustrated in Figure 1. The transmission of
information between physical and VSs s facilitated
by communication architecture in SSs.!'”! Finally,
the datasets and information shared inside the DT
framework are referred to as DTD.

The capability improves decision-making
among three primary approaches: Diagnosis, the
evaluation of past decisions; monitoring, which
is the oversight and control of current processes;
and prognosis, which is the forecasting of future
behaviors and outcomes.

DT Layer

This architecture is composed of three fundamental
components: The physical space, the virtual
space, and the connectivity model (as indicated in
Figure 2). The main secret of DT development is
the creation of a two-way data channel between
the real object and the virtual analog of it. Internet
of things (IoT) sensors are used to gather real-time
data of physical building projects.['¥! Not only
are these data used to generate correct numerical
models but they are also manipulated to model how
physical objects behave in specific circumstances.
The continuous process of gathering and analyzing
the information contributes to the development of
these models so thatthe DT can always successfully
emulate its physical equivalent. DTs architecture
with simulation models, or data models, is used
to make scientifically accurate copies of actual
PSs of the real world. It demands the use of
technologies including artificial intelligence (Al),
machine learning, data mining, etc., to process
these data. Finally, the user interacts with these
data by means of visualization.

These methods have been theorized as a DT
system architecture having five development
layers, including data collection layer, data transfer
layer, data integration layer, data visualization
layer, and services. The data collection techniques
and existing datasets are considered in the data
collection layer. Instead, network technologies,
communication protocols, and data transfer
mechanisms are covered by the transmission
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Figure 2: Layers of digital twin

layer. The digital modeling layer is concerned with
the techniques of quantifying the properties of
physical entities and techniques of building virtual
models. The data integration layer combines a
diverse range of technologies that facilitate data
storage, data and model integration, processing
and analysis, visualization and use of Al, machine
learning, and simulation engines.

Smart HVAC Control System

The combination of the Internet of Things (IoT),
artificial intelligence (Al), and real-time data
analytics has transformed the way HVAC systems
are managed, making them more responsive,
energy-efficient, and adaptable to dynamic
operating conditions. Conventional HVAC
systems were based on pre-programmed and set
timetables, thus, tended to consume unnecessary
energy and unreliable indoor comfort. Unlike
traditional “blind” control approaches, loT-based
sensor networks monitor key environmental
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conditions in real time, including temperature,
humidity, carbon dioxide (CO:) levels, airflow,
and occupancy, and can be seamlessly integrated
into intelligent building management systems.
A significant area of IoT use in HVAC is demand-
controlled ventilation, which constitutes a
dynamically changing airflow measurement in
real-time occupancy and air quality to reduce
the number of unnecessary energy consumed by
the equipment. Al goes a step further and allows
predictive analytics and machine learning models
to predict any changes in the indoor climate and
adjust settings. Convolutional neural networks
(CNNs), bidirectional long short-term memory
model, and model predictive control can be used
to forecast the change in temperature and reduce
energy usage by up to 17% using intelligent
preemptive adjustments. HVAC energy savings
can be achieved using reinforcement learning—
based control methods, such as Soft Actor—Critic
(SAC) and Proximal Policy Optimization (PPO),
which have been demonstrated to reduce energy
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expenditure by up to 18%. Furthermore, predictive
maintenance which is an Al-based implementation
has been a game-changer, where past and real-
time diagnostic is used to identify potential
malfunctions in the system even before they take
place and therefore, minimizing downtime and
repair expenses.

DT Technology in HVAC Systems

DTs are transforming HVAC management by
establishing a direct, data-driven connection
between physical systems (PSs) and intelligent
control mechanisms. The DTs, unlike the
traditional building management system (BMS),
offer adynamic and real-time virtual representation
of an HVAC system based on their reliance on a
manual monitoring system and set rules.!'” These
models constantly combine real-time data about
temperature, humidity, flow of air, and occupancy,
and predictive maintenance, optimization of
performance, and testing of scenarios are possible,
but the real world is not disrupted. Using the
methods of the latest modeling technologies,
one can be able to test various strategies using
building information modeling (BIM) and Al-
driven models and implement them with certainty
that the facility is energy-efficient and generates
minimum wastage. In contrast to static BMS, DTs
change dynamically, responding to variations in
the weather, occupancy levels, and energy prices
to achieve optimal system operation. To maintain
a correct real-time synchronization of the physical
HVAC systems and the virtual one, it is necessary
to have good sensor networks, powerful computing
power, and precise model calibration.

FDD IN DTS
FDD

Early fault diagnosis and fault detection are an
urgent type of predictive maintenance which obtains
more and more attention in the management of
facilities. Data-driven fault detection and diagnosis
(DFDD) is the process of identifying anomalies in
the behavior of building systems and components
using the data analysis tools and algorithms, before
they lead to major failures.!*” Through the detection
of errors at the initial stage, facility managers are
able to deal with them before it escalates into
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expensive repair or replacement, as indicated in
Figure 3. The analytical-based techniques are based
on mathematical models and physical laws that
make use of faults and abnormalities in building
systems. Knowledge-based approaches on the other
hand apply expert knowledge and rules to identify
errors and make decisions.

Analytical-based methods

Analytical approaches to FDD begin with

fundamental concepts and a physical knowledge

of the system; this knowledge is then used to
construct a mathematical model that compares
measured data with residuals to identify errors.

These techniques, which can be classified into

simplified and complex physical models, are

helpful for reducing errors in smart building
routine operations and maintenance.

e Detailed physical  models: Detailed
physical models, including feedforward
and autoregressive exogenous models, can
mimic both healthy and broken states of the
system; they just necessitate an exhaustive
knowledge of the physical interactions among
all constituent parts

e Simplified physical models: Physical models
that are simplified. A variety of HVAC systems
can be enhanced in terms of system reliability,
energy consumption, and maintenance costs
by utilizing lumped parameter approaches and
simplified assumptions to convert coupled
space partial differential equations into
ordinary differential equations.

Knowledge-based method
Knowledge-based methods are often used when
it is too expensive or hard to describe a system
physically or mathematically or when there is not
enough data to go around. In addition, they work
well when modeling requires specific knowledge
or when the system has few inputs, outputs, and
states. There are various types of knowledge-
based approaches. Some of these include expert
systems, causal analysis, fuzzy logic, and first-
principle method.

e (Causal analysis: Fault tree diagrams, structural
graphs, and signed directed graphs are some of
the tools used for causal analysis in FDD

e Fuzzy logic: Fuzzy logic, a kind of Boolean
logic, can be used to identify instances of
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Figure 3: Classification of fault detection and diagnosis methods

unusual power usage by designing fan coil units.
A clustering technique, error-free comparisons
of neighborhood and average values, and
statistical analysis of defect identification are
all part of the suggested approach

e First-principle-based method: Rule-based
approaches based on first-principle knowledge
of physical processes in systems, such mass and
energy, are known as first-principle models.
Mathematical models of the HVAC system’s
physical parts and their interactions with one
another are created using these techniques.
These parts include heat exchangers, fans, and
pumps.

Data-driven methods
Data-driven methods are those that rely on data
rather than explicit mathematical or physical
models of the system to construct models or
generate predictions.”!! On the contrary, these
approaches rely on statistical or machine learning
methods to discover data patterns and linkages,
which then inform predictions. Three distinct
types of data-driven approaches exist: Supervised,
semi-supervised, and unsupervised learning.

e Supervised methods: The goal of supervised
machine learning is to train a model to
recognize patterns in data by adjusting weights
in training datasets that have labelled inputs
and outputs. Both classification and regression
fall under the umbrella of supervised learning.
A few examples of classification algorithms
are supervised neural networks, K-nearest
neighbors, DT, and support vector machine
(SVM). Polynomial, logistical, and linear
regression are all types of regression methods

e Semi-supervised methods: Semi-supervised
procedures find application when training

AJCSE/Oct-Dec-2025/Vol 10/Issue 4

set is scarce and erroneous training data are
not abundant to FDD in HVAC buildings.
These approaches include learning a model
to identify and diagnose faults with a limited
quantity of labelled data, consisting of both
normal and faulty system behavior and a
significant quantity of unlabeled data. The
common methods of exploiting labeled and
unlabeled data in an effective way include the
clustering technique, active learning, and the
generative models

e Unsupervised methods: Unsupervised machine
learning is a kind of machine learning which
is able to analyze and categorize unlabeled
datasets.*) This comes in handy, especially
in real-world complex systems like HVAC
systems, where there may be a difficulty
or cost in getting correctly labeled data to
train on. Typical non-supervised algorithms
are clustering, autoencoders, generative
adversarial networks, principal component
analysis, and association rule mining.

Hybrid method

Hybrid approaches within the FDD are the
combination of analytical, knowledge-based, and
data-driven approaches to provide more accurate
andreliable FDD outcomes. The hybrid approaches
have the ability to capitalize and give support to
the strengths of each technique to overcome the
weaknesses and achieve a better performance
of FDD. A problem-solving method uses open-
loop rules for lambda tuning to automate control
hunting. A commercial FDD program made use
of the algorithm. Suboptimal performance and
premature HVAC equipment failure can be caused
by control hunting, a prevalent issue in commercial
buildings.
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FDD Workflow of DT Framework

FDD process flow comprises gathering relevant
data from target building systems, analyzing that
data, creating models, and finally, deploying those
models. Figure 4 shows that the majority of FDD
studies have been on data modelling and how to
use it for fault classification with supervised or
unsupervised FDD methods.

A major roadblock to automating FDD is the data
comprehension, preparation, and analysis that
frequently necessitate human involvement. To
automate FDD and reduce human intervention,
it is necessary to ensure that computational
systems can interpret ad hoc knowledge
learned from real-time data using statistical and
symbolic artificial intelligence (Al) techniques,
in addition to existing ontological knowledge.*
The FDD process makes use of contextual and
temporal knowledge in relation to the sensor
dimensions that are devoted to the identification
of individual defects. This research adds fault
tags to the brick ontology, which help identify
the chosen sensors with machine-readable fault
tags, so keep the new information for future
reference. The data pipelines get the real-time
data that target particular faults ready to be used
by the FDD by annotating it with brick model
fault tags.

APPLICATION OF DTS IN HVAC
PERFORMANCE MONITORING

DT technology is a leading-edge tool that is used to
improve the performance of HVAC systems. A DT
basically models HVAC parts, the system, or even
the whole building atmosphere in a computer,
thus it becomes possible to have uninterrupted
checking, review, and tuning performance
assessment but also predictive analytics.

Data collection — Data understanding

+ Data preparation

Real Time Performance Monitoring

DTs allow for performance monitoring in real-time
as they keep updating the data from the physical
HVAC systems to the virtual ones. Various
sensors and IoT devices installed in the system
gather essential operational parameters such as
temperature, humidity, airflow rates, pressure
differentials, equipment status, and energy
consumption and then send them to the DT platform.
The digital replica takes in this information and
also has a look at the best operating conditions or
the results of the predictive models.

Energy Consumption Analysis and
Optimization

DTs are essential in the assessment and subsequent
enhancement of the energy consumption of
HVAC systems. Through nonstop data collection
of equipment power use, cooling/heating loads,
occupancy, and environmental conditions, the DT
is capable of pinpointing the areas where energy
inefficiencies are emerging, it could be situations
such as wrong setpoints, excessive cycling, or poor
heat transfer performance.*” With DTs, operators
have the freedom to experiment with and fine-
tune various control strategies such as temperature
setpoint adjustment, ventilation rate modification,
or operation schedule changing in a virtual
environment before the real system implementation.

Predictive Maintenance and Degradation
Tracking

DTs make it possible for the HVAC system to stay
in shape with predictive maintenance through the
ongoing visual check of the system parts and the
identification of the first signs of wear and tear.
The DT, by analyzing vibration, temperature,
pressure, and airflow patterns sensor data, can

+ Data modelling —+ Model deployment

Fault
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Figure 4: Fault detection and diagnosis workflow based on the digital twin analytical framework

AJCSE/Oct-Dec-2025/Vol 10/Issue 4



Mehta: Review of Digital Twin Applications for Heating, Ventilation, and Air Conditioning Performance Monitoring and
Fault Detection

isolate a number of different abnormalities such

as coil fouling, filter clogging, refrigerant leaks,

or declining equipment efficiency.

e Condition-based monitoring using DTs
Continuous monitoring of equipment is
critical for assessing its operational condition,
particularly by tracking parameters such as
vibration, pressure, temperature, and airflow,
which enables early detection of abnormal
behavior and performance degradation.

e Remaining useful life prediction
maintenance scheduling
DTs employ both data-driven and physics-
based models to locate the time till which
the HVAC parts are usable, thus giving
maintenance staff the time for action to be
most efficient in both cost and effectiveness.

and

IEQ Assessment

HVAC systems are major factors that determine
indoor comfort, productivity, and the general
health of the occupants. DTs enable a thorough
measurement of [EQ through the simulation and
evaluation of various parameters that include
temperature distribution, humidity levels, air quality
indices (e.g., CO,, Volatile organic compounds

(VOCs), particulate matter), and ventilation

effectiveness in different zones of a building.

a. DTs are always matching real-time IEQ
measurements with well-established standards,
thus they are very helpful in maintaining the
best possible thermal comfort and indoor air
quality for the users of the building

b. By means of airflow simulations and virtual
testing, DTs locate the places where the
ventilation is insufficient, the air is stagnant, or the
distribution is not even, thus they make it possible
to be very precise in the targeted improvements

c. DT may find temperature imbalances, hot/
cold spots, or humidity deviations, which
is enabling the facility managers to make
adjustments to the system for a better level of
occupant comfort.

FDD Support

DTs improve the effectiveness of FDD in HVAC
systems by constantly checking performance data
for the real system against the expected behavior of
the model departure from the norm is detected an
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unusual temperature, a reduced airflow, a pressure
imbalance, or even an irregular energy use, the
DT not only locates the fault but also identifies its
cause. By integrating physics-based models with
data-driven algorithms, the DT is able such as a
fault in the sensor, the leakage of the refrigerant,
coil fouling, or a malfunction of the equipment.

LITERATURE OF REVIEW

The research works have been done to implement
DT technology in the HVAC sector and other
intelligent systems. Table 1 provides an organized
comparison of the works usage of DTs for
fault detection, predictive maintenance, energy
optimization, and system-level —monitoring
challenges and limitation.

In Rastogi et al., 2025, DT technology, a virtual
representationofanelectricvehicle (EV), integrates
real-world data with simulations, allowing for
continuous analysis, proactive maintenance, and
better decision-making which has emerged as
a game changer in automotive industry. In this
research, the authors have created a DT of an
EV and its Battery Management System using
Simulink, incorporating real-world fluctuations,
potential errors, and system faults development
of the proposed hybrid temporal-spatial attention
network, a deep learning model that integrates
CNN. Critical issues such as overheating, sensor
malfunctions, battery wear, and motor failures
were identified by the model efficiently.l*”

In Nagy et al., 2025, real-time DT technology,
the simulation reproduces subsystem behavior
with high fidelity, offering valuable insights into
system-level power dynamics and energy usage.
The results demonstrate that DT-based modeling
is highly effective for evaluating and forecasting
electric power consumption, and itholds significant
potential for predictive diagnostics. In particular,
the ability to replicate electrical subsystems in
real time enables proactive monitoring and failure
prediction for safety-critical components—areas
where traditional diagnostic tools may fall short
due to increasing system complexity.!>®

Ababsa et al., 2024 investigated the application of
Digital Twin (DT) technology for enhanced fault
diagnosis in smart buildings, with the objective
of optimizing energy performance. Indeed, the
emergence of DTs represents a significant advance
in this field, as they enable the monitoring and
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Table 1: Comparative analysis of literature review of DT in hvac monitoring and fault detection

Author (s), Study on Key findings Application Limitations Future work
year
Rastogi et al., DT of EV and battery DT integrates real-world Automotive Real-world data Enhance generalization

2025

management system
using Simulink

data with virtual
simulations. HTSAN using
CNN detects faults like
overheating, sensor errors,
battery wear, motor failures.

industry; EV battery
management; fault
detection; predictive
maintenance.

Nagy et al., Real-time DT High-fidelity simulation Electric power
2025 modeling of electrical ~ replicates subsystem systems; subsystem
subsystems behavior strong potential monitoring; energy
for predictive diagnostics in  forecasting; predictive
safety-critical systems. diagnostics.
Ababsa et al., An HVAC DT for The HVAC system may be ~ Smart building
2024 Problem Finding in optimised and monitored management;
Intelligent Buildings in real-time with the use HVAC FDD; energy
of DTs. Highly efficient at optimization.
predicting and detecting
faults
Tian et al., DT-based fault Missing data filled using Industrial dust
2024 detection using cubic spline interpolation. removal systems;
OCSVM optimized CSA optimizes OCSVM predictive fault
by CSA hyperparameters improving  detection; real-time
detection. DT enables visualization.
intuitive visualization of
dust removal system
Abrazeh DT of a MIMO Developed DT combining Advanced
etal., 2023 non-linear HVAC HIL and SIL for HVAC HVAC control;
system using HIL + control NIB model-free robotics-inspired
SIL and DRL control. model-free controllers;
DRL-based adaptive
HVAC optimization.
Haigang BIM +MR + DT for  BIM + MR improves HVAC maintenance;
etal., 2023 HVAC Maintenance remote visualization MR-based training;
and troubleshooting DT immersive repair

enhances fault diagnosis and
maintenance efficiency.

guidance; remote
collaboration.

variability and system
complexity may affect
model robustness;
computational load of
HTSAN.

High computation
required for real-time
high-fidelity simulations;
integration challenges
with legacy systems.

Data interoperability
issues; dependency on
high-quality sensor
networks.

Sensitive to data quality
and imbalance; high
computational cost of
CSA optimization.

DRL training requires
significant time and
data; model complexity;
potential instability in
early learning stages.

MR hardware cost;
alignment and tracking
accuracy; adoption
difficulty for technicians.

across different EV
models; improve
real-time fault detection
accuracy integrate more
diverse sensor data.

Improve scalability
integrate Al-based
prediction; apply
DTs to more complex
multi-system
architectures.

Develop standardized
data frameworks
improve cross-platform
compatibility for smart
building systems.

Extend method to other
industrial systems
integrate deep learning
for improved anomaly
detection.

Apply to larger building
systems integrate
renewable energy-based
HVAC; enhance
controller robustness.

Improve MR accuracy
integrate Al for
automated diagnostics;
expand system to
multi-building facilities.

EV: Electric vehicle, HTSAN: Hybrid temporal spatial attention network, CNN: Convolutional neural networks, FDD: Fault detection and diagnosis, OCSVM: One-class
support vector machine, CSA: Clonal selection algorithm, MIMO: Multi-input multi-output, HIL: Hardware-in-loop, SIL: Software-in-loop, HVAC: Heating, ventilation,
and air conditioning, NIB: Nonlinear Integral backstepping, BIM: Building information modeling, MR: Mixed reality, Al: Artificial intelligence, DRL: Deep reinforcement

learning, DT: Digital twin

regulation of various systems as HVAC. They can
also analyze the data generated by such systems to
detect possible faults and even make predictions
to anticipate potential problems. Nevertheless,
managing the interoperability of heterogeneous
data remains a challenge to achieve an operational
and efficient DT. This study considers the fault
detection and diagnosis (FDD) process for building
HVAC systems as a representative use case.””

In Tian et al., 2024, fault detection method based
on DT and one-class SVM (OCSVM) optimized by
clonal selection is proposed. First, the cubic spline
interpolation method is used to fill in missing data.
To tackle the issue of data imbalance, a one-class
support vector machine (OCSVM) is employed.
In addition, the clonal selection algorithm is used
to optimize the OCSVM hyperparameters, thereby
improving fault detection accuracy. Finally, to
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address visualization issues, DT technology is
used to visualize the dust removal system, offering
higher monitoring accuracy compared to traditional
methods and allowing users to intuitively understand
the environmental conditions, facilitating time.**!

In Abrazeh et al., 2023, a DT for an HVAC
system, which stands for multi-input multi-output
nonlinear, is created and studied. Integrating
hardware-in-loop (HIL) and software-in-loop
(SIL) helps to create the concept of DT control
in a clear manner. Integrating the HIL and SIL
controllers with a nonlinear integral backstepping
(NIB) model-free control technique allows for
HVAC system control without dynamic feature
identification. The measured data are used to
update the virtual controller’s NIB controller
coefficients using deep reinforcement learning
(DRL). Using a multi-objective method, the DRL
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algorithm designs the NIB controllers in the HIL
and SIL for the HVAC system’s temperature and
humidity.?"

In Haigang et al., 2023, the building’s air
conditioning system fault diagnosis process is
frequently hindered by on-site work collaboration
factors, leading to low fault repair efficiency,
and the operation and maintenance of HVAC
system equipment is often complicated because
some of the equipment installation locations are
hidden within the building. In response to the
aforementioned issues, it is recommended to
leverage DT technology to augment the interaction
capabilities of BIM with mixed reality (MR) during
the maintenance of HVAC system equipment. The
goal of developing the BIM+MR fault diagnosis
system was to enhance the DT technology-based
HVAC system equipment maintenance process by
facilitating remote visualization engagement in an
immersive environment.%

CONCLUSION AND FUTURE WORK

FDDs are critical to the construction of facilities
because they are complex and require a smooth
and effective monitoring of maintenance,
HVAC performance, and fault detection. DTs
improve the visibility of systems and enable the
ongoing system performance assessment and the
early identification of system malfunctions by
establishing the real-time relationship between
the real and virtual HVAC systems. The high
diagnostic accuracy and the reduced amount of
manual intervention were brought about by the use
of analytical, knowledge-based, and data-driven
FDD techniques incorporated in DT frameworks.
Furthermore, real-time monitoring provided by
DT enhances the understanding of the system
behavior in various environmental and operating
conditions, and predictive maintenance capabilities
help minimize the downtime and increase the
equipment lifespan provided by the DT-based
HVAC systems 1is significantly better compared
to the traditional monitoring and maintenance
models, thus making the DTs a groundbreaking
technology of an intelligent and highly responsive
system to manage the building. Future work will
DT frameworks, enhancing integration of multi-
source data and application of advanced machine
learning techniques for automated fault diagnosis
and prognostics. Besides, the use of MR, edge
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computing, and adaptive control strategies is also
likely to be beneficial in real-time responsiveness
and user interaction.Future research should focus
on expanding DT applications to multi-building
ecosystems, renewable energy—integrated
HVAC systems, and autonomous smart-building
platforms. Resolving these issues will speed up
the implementation of highly sophisticated and
smart DT solutions for HVAC operations.
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