
*Corresponding Author: B.Usharani, Email: ushareddy.vja@gmail.com 

RESEARCH ARTICLE 

www.ajcse.info 

 
Asian Journal of Computer Science Engineering 2017; 2(4):22-33 

 

 

 

Integrity and Privacy through Authentication Key Exchange Protocols for 

Distributed Systems 

 
*B. Usharani  

 
*Assistant Professor, Department of Computer Science and Engineering, KLEF, Andhra Pradesh, India. 

 

Received on: 10/06/2017, Revised on: 30/07/2017, Accepted on: 15/08/2017 

ABSTRACT 

Networking is the practice of connecting several computing devices together in order to share resources. 

In real world, attacks via force and fraud are privacy (unauthorized release of information), 

Integrity (tampering with data), Service (denial of service).The goals are disallow unauthorized access, 

allow authorized access, resist DOS attacks .In recent years, many efficient AKE protocols have been 

proposed to achieve user privacy and integrity in the communications. A communication model is a 

representation where there are a large number of clients accessing multiple remote and distributed storage 

devices in parallel. Authenticated key exchange (AKE) protocol allows a user and a server to authenticate 

each other and generate a session key for the later communications. This paper concentrates on how to 

swap key materials and begin parallel secure sessions between the clients and the storage devices in the 

Network in a well-organized and scalable manner.  

 

Keywords: Authenticated key; Exchange Protocols; Kerberos-based approach; Security 

INTRODUCTION 

Computer network aims to give users with the 

ability to distribute data amongst multiple gadgets, 

whether they are in the same building or across 

the world. Conventional computer networking 

based on Ethernet and fiber optic cables to join 

various devices on a network. More modern 

technology has emerged that allows for wireless 

connections between electronics. These 

technologies include Wi-Fi and Bluetooth 

compatible devices. It is very helpful to 

understand the role that each of these technologies 

plays in computer networking.  

There are two primary considerations for 

networks: security and performance. The third 

consideration is manageability.  

 Network Security is an organization’s 

strategy and provisions for ensuring the 

security of its assets and of all network 

traffic. 

 Integrity - ensuring the modification of 

assets is handled in a specified and 

authorized manner. 

 Availability - a state of the system in 

which authorized users have unbroken 

access to said resources. 

In a parallel application the file data is spread 

among the various nodes or devices for giving the 

concurrent access to multiple tasks using parallel 

file system. This is widely used in large scale 

cluster computing which is mainly depends upon 

the reliable fetch as well as high performance to 

the large amount of datasets. Due to this the 

bandwidth of I/O is highly achieved by concurrent 

data fetching with different number of devices in 

between the maximum number of clusters which 

are used for computing. During this the loss of 

data is prohibited or secured using the data 

mirroring and fault- tolerant striping algorithms 

are used for data mirroring. There are some 

examples of highly performance parallel file 

systems which undergoes in production that uses 

the General Parallel File Systems.   

 

Network Security 

Authentication means ensures that the origin of a 

message or electronic document is correctly 

identified, with an assurance that the identity is 

not false. If one is not careful, the exchanged 

messages Q may disclose noticeable structure, and 

can “leak” information about S, enabling a 

partition attack. Password-based authentication 

protocols cannot rely on persistent stored 

information on the client side.  

 

Integrity  

http://www.ajcse.info/


Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             23 

Integrity means ensures that only authorized 

parties are able to modify computer system assets 

and transmitted information. Provisions in the 

protocol do not allow the contents to be 

intentionally or unintentionally modified. 

During data transmit, data confidentiality is 

ensured by added message encryption collectively 

with data transfer protocols that ensure the 

security of the data being transmitted by the 

interoperation participants (including data 

integrity verification). During data storage and 

processing, their confidentiality, integrity, and 

privacy are ensured by additional mechanisms of 

encryption and masking collectively with well-

defined allocation of access in concordance with 

privileges and permissions 

 

Privacy 

Privacy is ensured by the absence of sensitive data 

in the messages being transferred, as well as by 

the implementation of the required mechanisms of 

data storage and system access control facilities. 

Data is encrypted for an intended recipient. 

System components must not have underlying 

potential of unauthorized data acquisition and 

transfer. The use of weak cryptographic 

algorithms by the application can lead to privacy 

violations as data and metadata can be inferred 

through network activity. In the worst case, weak 

ciphers can be completely compromised, leading 

to complete violation of privacy. User privacy can 

be compromised by attacks such as phishing, 

which is often the first activity in advance of an 

advanced persistent threat that can direct to larger 

scale compromise. Attacks against operating 

systems have been numerous and virulent, from 

malware and privacy-compromising advertising to 

ransom ware and targeted zero-day attacks. 

 

Authenticity 

Digital certificates are used to grant a verified 

identity. The certificates are signed by a trusted 

third party. The TTP is a certification authority 

(CA). The CA signs the certificate attesting proof 

the identity has been validated. The browser 

makes sure the identity assertion from the CA. 

Authenticity is granted for the server and can be 

provided for the client. 

 

DFS 

 
                             Figure 1 Distributed File System 

 

A distributed file system is a file system 

distributed across multiple machines i.e. multiple 

machines share files and storage devices. The 

main purpose of DFS is sharing of files. 

Distributed file systems are commonly known 

as network file systems. [23] 

Benefits of DFS 

1. Simplified data migration: Can move data 

at background without reconfigure 

applications and shortcuts and without call 

for to reeducate users about where they 

can find their data 

2. Increased availability of file server data 

3. Security integration: file and folder 

security is enforced by existing the NTFS 

file system and shared folder permissions 

on each target 

4. File Sharing 

5. Transparency 

6. Concurrent File updates 

7. File Replication 

8. Hardware and Operating System 

Heterogeneity 

9. Fault Tolerance 

10. Consistency 

11. Security 

12. Efficiency 

 

Goals of DFS 

1. Access/Network Transparency 

2. Availability 

 

NFS 

The initial network file system—called File 

Access Listener—was developed in 1976 by 

Digital Equipment Corporation (DEC). NFS was 

the first modern network file system (built over 

the IP protocol). It began as an experimental file 

system developed in-house at Sun Microsystems 

in the early 1980s. The NFS protocol was 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             24 

renowned as a Request for Comments (RFC) 

specification and evolved into what is known as 

NFSv2[19].The Network File System (NFS) is 

a client/server application that allows  a computer 

user view and optionally store and revise files on a 

remote computer as though they were on the user's 

own computer.  

 

 
Figure 2 Communication between NFS client and NFS Server 

 

The NFS protocol is one of several distributed file 

system standards for network-attached storage 

(NAS)[21].NFS operates on TCP/IP network.NFS 

enables you to mount a file system  on a remote 

computer and directly access any of the files on 

that remote file system. Network File System 

(NFS) [18] is currently the individual file system 

standard supported by the Internet Engineering 

Task Force (IETF). The NFS protocol is a 

distributed file system protocol originally 

developed by Sun Microsystems that permits a 

user on a client computer, which may be diskless, 

to access files over networks in a manner similar 

to how local storage is accessed. It is designed to 

be portable across different machines, operating 

systems, network architectures, and transport 

protocols. Such portability is achieved through the 

use of Remote Procedure Call (RPC)  primitives 

built on top of an external Data Representation 

(XDR) .Among the current key features are file 

system migration and replication, file locking, 

data caching, delegation (from server to client), 

and crash recovery.  

 

 
              Figure 3: The client-server architecture of NFS 

 

Versions of NFS 

 NFSV2-older and widely used 

version.NFSv2 uses the User Datagram 

Protocol (UDP) to provide a stateless 

network connection between the client and 

server. 

 NFSV3-includes 64 file handles, safe 

Async writes and robust error handling. 

NFSv3 can use either UDP 

or Transmission Control Protocol (TCP) 

running over an IP network. As of  UDP is 

stateless, if the server goes down 

unexpectedly, UDP clients go on to 

saturate the network with requests for the 

server. For this reason, TCP is the chosen 

protocol when connecting to an NFSv3 

server. Supports 64-bit file sizes and 

offsets, allocating clients to use more than 

2Gb of file data. 

 NFSV4-works through firewalls and 

through internet, consume state full 

operations, no need of port map per, 

supports ACL. 

 

NFS Protocols 

NFS protocol depends on RPC and port map. An 

RPC server tells port map which port will be used 

and the managed RPC number. A client contacts 

port map to get port number of the desired 

server.RPC packets are addressed to the 

corresponding port. 

 

 
                        Figure 4: NFS Protocol 

 

NFS protocol design does not depend on transport 

protocols. It is used with UDP by default but can 

be used with TCP protocols.NFS is designed as a 

stateless protocol. So, server maintains no per-

client state, and every RPC executes atomically 

and contains all state essential to perform RPC 

(.This makes it immune to denial-of-service 

attacks. Its design should be robust. There must be 

no problem when client breaks down or when 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 

http://searchenterprisedesktop.techtarget.com/definition/client
http://whatis.techtarget.com/definition/server
http://searchsoftwarequality.techtarget.com/definition/application
http://searchexchange.techtarget.com/definition/file
http://searchnetworking.techtarget.com/definition/protocol
http://searchwindowsserver.techtarget.com/definition/distributed-file-system-DFS
http://searchwindowsserver.techtarget.com/definition/distributed-file-system-DFS
http://searchstorage.techtarget.com/definition/network-attached-storage
http://searchstorage.techtarget.com/definition/network-attached-storage


Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             25 

server reboots. There are no file descriptors; as a 

substitute, there are file handles, which are 64-bit 

numbers recognizing files (not filenames) 

 

The NFS Protocol life cycle 

 
                         Figure 5: NFS file handles 

 

Read/write consistency is not assured in NFS. 

Open/close consistency is assured in NFS. 

NFS implementation on clients does pipelining 

and caching. 

Figure 6 illustrates a common deployment of NFS 

within a network of various operating systems, all 

of which maintain the NFS standard.  

 

 
             Figure 6: A simple NFS configuration 

In Figure 6, the Linux machine is the NFS server; 

it shares or exports one or more of its physical, 

attached file systems. The Mac OS X and 

Windows machines are NFS clients. Each uses, 

or mounts, the shared file system. Indeed, 

mounting an NFS file system give in the same 

result as mounting a local drive partition—when 

mounted, applications just read and write files, 

subject to access control, unconscious to the 

machinations essential to carry on data. 

Here, NFS is a problem, because the limits of the 

NFS server—are its bandwidth, storage capacity, 

or processor speed—strangle on the whole 

performance of the computation. So, NFS is a 

bottleneck. 

 

Practical uses of NFS 

 Share a file or CD with any no: of clients. 

 Sharing the directory 

 Central NFS server stores all user home 

directories. 

 

NFS Problems 

When dealing with a distributed file system 

among multiple nodes, the issue of file integrity 

becomes the most important. The two main 

problems fall into the category of either 

synchronization issues, or reliability issues. NFS 

no longer assurance write to read consistency with 

multiple clients, but it does guarantee closed to 

open consistency because closing and reopening is 

a much slower process and will make sure all 

changes are accounted for. 

 

i. Synchronization: 

FS does however have close-to-open 

consistency. This means that the client 

waits for all write responses from the 

server before a close is performed. 

However, close is a system call. There is 

no CLOSE in the NFS protocol. This is 

because NFS doesn't care about file 

descriptors, just file handles. This means 

that when the client actually calls close 

(file descriptor), it is likely to be close to 

return -1 with the error no set to EIO. For 

this cause it develops into of particular 

importance to test the close return values 

for potential write fails on an NFS server. 

There is one alternative option and that is 

to enable the Synchronous write flag, but 

this is infrequently done since it basically 

removes pipelining resulting in poor 

performance. 

ii. Reliability Issues: 

On distributed or networked file systems 

the probability of failure raises 

proportionally to the number of devices 

involved. When disk blocks go bad, or 

devices report read/write errors, there 

wants to be some sort of mechanism to 

make sure the data is not lost. The first 

solution to data corruption was to use 

logging to spot areas that were 

compromised. The problem then became, 

well what happens if the log is corrupted? 

This gave go up to double logging or 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             26 

redundancy which is now enhanced know 

today as a RAID, a Redundant Array of 

Independent Disks. 

iii. From a security perspective, the NFS 

protocol is not encrypted or otherwise 

protected on the wire. This means that 

anyone who has access to the NFS 

network has the ability to capture data that 

represents the on-disk information stored 

in virtual machine files. Clearly, this is a 

significant risk that needs to be mitigated 

with suitable configuration and 

management actions. If the data set grows 

too large, the NFS server rapidly becomes 

the bottleneck and significantly impacts 

system performance because the NFS 

server sits in the data path between the 

client computer and the physical storage 

devices. 

 

Authenticated Key Exchange Protocols 

A key exchange protocol is said to give key 

confirmation, if both parties are sure that the 

intended peers truly hold the session key. A 

protocol which is an authenticated key exchange 

with key confirmation protocol is called AKC 

protocol [4]. A lot of desirable properties for AKE 

protocols have been identified:  

 Known-key security: It is reasonable to 

assume the adversary has the ability to 

learn the session keys except for the one 

under attack. A protocol is said to be 

known-key secure if the compromise of 

one session key should not compromise 

other session keys.  

 Forward security: If the static keys of one 

party or two parties are compromised, the 

opponent cannot get the formerly 

established session keys.  

 Key compromise impersonation resistance: 

Suppose A’s static key is compromised. 

Clearly, the adversary can arbitrarily 

masquerade as A in future. However, we 

want to guarantee that the adversary 

cannot masquerade as another party B to 

communicate with party A.  

 Ephemeral key reveal resistance: If the 

adversary obtains the ephemeral keys of 

the related sessions, the session key under 

attack still remains secure. The 

authenticated key exchange protocols have 

been established to be surprisingly difficult 

to design.  

 

Bellare and Rogaway [13] first propose a formal 

security model for authentication and key 

distribution. They model the adversary’s 

capability by providing it with oracle queries, e.g. 

Send, Reveal and Test queries. Since then, there 

have been several extensions to the model [14], [12], 

[15]. Choo, Boyd and Hitchcock [16] evaluate the 

most commonly used security models for key 

exchange protocols. All these models attempt to 

cover as many of these properties as possible. 

Key exchange protocols permits two or more 

parties communication over a public network to 

establish a common secret key called a session 

key. Due to their significance in building a secure 

communication channel, a number of key 

exchange protocols have recommended over the 

years for a variety settings. In order to avoid 

mistakes and impersonations during the process 

we can use a variety of authentication means. The 

most commonly used authentication means is 

based on the following factors: 1. a secret 

password. 2. Secure device with a secret key. If a 

protocol have only one authentication factor, it 

would be risky because the password can be 

recovered through social engineering and the 

device can be stolen, open or cloned, even when 

various tamper-resistant techniques are used to 

guard it. Apparently combining the two factors in 

the similar authentication protocol could boost the 

security since the adversary would have to break 

the two protections in order to win [17]. 

Perfect Forward Secrecy -An authenticated key 

exchange protocol presents perfect forward 

secrecy if exposé of long-term secret keying 

material does not compromise the secrecy of the 

exchanged keys from former runs. The property of 

perfect forward secrecy does not relate to 

authentication without key exchange. 

 

LITERATURE SURVEY  

“FARSITE: Federated, Available, and Reliable 

Storage for an Incompletely Trusted 

Environment”- This paper Farsite is designed to 

support the files and also the I/O workload of 

desktop computers in a large company or 

university. It provides availability and reliability 

through replication; privacy and authentication 

through cryptography; integrity through 

Byzantine-fault-tolerance techniques; consistency 

through leases of variable granularity and 

duration; scalability through namespace 

delegation; and reasonable performance through 

client caching, hint based pathname translation, 

and lazy update commit [24]. “Block Level 

Security for Network-Attached Disks Marcos”-

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             27 

This paper propose a practical and efficient 

method for adding security to network-attached 

disks (NADs) [25]. 

 “Authenticated Key Exchange Protocols for 

Parallel Network File Systems”-This paper 

presents large-scale distributed file systems 

supporting parallel access to multiple storage 

devices [1]. 

 “Authenticated Key Exchange Secure against 

Dictionary Attacks”- This paper proposes 

password-based protocols for authenticated key 

exchange (AKE) despite the use of passwords 

drawn from a space so small that an adversary 

might well enumerate, off line, all possible 

passwords [9]. 

“  Analysis of Key-Exchange Protocols and their 

use for Building Secure Channels “- This paper 

presents a key-exchange protocol that satisfies the 

security with symmetric encryption and 

authentication functions to provide provably 

secure communication channels and the 

communication links are perfectly authenticated, 

and then translate those using general tools to 

obtain security [26].               

 “Simple Password-Based Encrypted Key 

Exchange Protocols” -This paper proposes a 

technique called SPAKE1: a simple non-

concurrent password-based encrypted key 

exchange based on the multi-dimensional version 

of password-based chosen basis computational 

Diffie-Hellman problem, S-PCCDH. [2]. 

 “User Authentication to present security against 

Online Guessing Attacks.”-This paper proposed 

SPAKA+ that strengthens SPAKA protocols 

against online dictionary attacks [3].  

 “Key Exchange Protocols: Security Definition, 

Proof Method and Applications”-This paper 

proposed a compositional method for proving 

cryptographically sound security properties of key 

exchange protocols, based on a symbolic logic 

that is interpreted over conventional runs of a 

protocol against a probabilistic polynomial-time 

attacker [4]. 

“A Secured and Authenticated Message Passing 

Interface for Distributed Clusters”-This paper 

provide user authentication and authenticate 

messages transmitted from cluster members to 

KGC [5]. 

 “J-PAKE: Authenticated Key Exchange Without 

PKI” -This paper proposed a protocol, called J-

PAKE, which authenticates a password with zero-

knowledge and then subsequently creates a strong 

session key if the password is correct. It requires 

no PKI deployments and protects users from 

leaking passwords [6]. 

“Automatically Verified Mechanized Proof of 

One-Encryption Key Exchange”-This paper 

proposed a protocol One-Encryption Key 

Exchange (OEKE) .This paper proved the security 

of OEKE using the tool CryptoVerif [7]. 

 “Password Authenticated Key Exchange by 

Juggling” This paper proposed a protocol called 

Password Authenticated Key Exchange by 

Juggling for security .This protocol achieves 

mutual authentication in two steps: first, two 

parties send ephemeral public keys to each other; 

second, they encrypt the shared password by 

juggling the public keys in a verifiable way [8]. 

 “Scalable Security for Petascale Parallel File 

Systems “-This paper proposed Maat, a security 

protocol designed to provide strong, scalable 

security. Maat can scale to handle file systems 

with thousands of clients accessing files striped 

across thousands of network-attached storage 

devices [10].  

 

PNFS 

The PNFS is introduced by the UMich/CITI, IBM, 

ENC, and Sun. This paper is focusing on 

maintaining Integrity and Privacy in 

Authenticated key exchange protocol for Parallel 

Network File System. PNFS provides parallel file 

access across distributed servers. PNFS is heavily 

driven by Panasas, NetApp, EMC, IBM, Sun (now 

Oracle) among others [22]. The fastest 

supercomputer in the world and the first computer 

to reach a peta-flop uses the parallel file system 

built by Panasas [20]. NFS stands ready to provide 

super-storage speeds to super-computing 

machines. PNFS also makes sure that data can be 

better load balanced to meet the needs of the 

client. 

PNFS divides the file system protocol processing 

into two parts: metadata processing and data 

processing. Metadata is information regarding a 

file system object, such as its name, location 

within the namespace, owner, permissions and 

other attributes. The entity that supervises 

metadata is called a metadata server. Regular 

files’ data is striped and stored across storage 

devices or servers. Data striping occurs in at least 

two ways: on a file-by-file basis and, within 

adequately large files, on a block-by-block basis. 

Unlike NFS, a read or write of data managed with 

PNFS is a straight operation between a client node 

and the storage system itself. 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             28 

 
Figure 7. The Conceptual model of PNFS. 

 

PNFS Architecture and Core Protocols 

The PNFS architecture consists of three main 

components: 

 The metadata server holds all non data 

traffic. It is accountable for maintaining 

metadata that describes where and how 

each file is stored. 

 Data servers (Storage devices) layup file 

data and respond directly to client READ 

and WRITE requests. File data can be 

striped across a number of data servers. 

One or more clients are able to access data 

servers in a straight line based on 

information in the metadata received from 

the metadata server. 

 Three types of protocols are used between 

the clients, metadata server, and data 

servers: 

 A control protocol is used to synchronize 

the metadata server and storage devices. 

Synchronization, such as reorganizing files 

on media, is hidden from clients. This is 

not defined by the PNFS specification and 

differs from vendor to vendor.  

 PNFS protocol is used between clients 

and the metadata server. The PNFS 

protocol that transfers file metadata, 

between the metadata server and a client 

node. It is used to retrieve, which hold the 

metadata that illustrates the location and 

storage access protocol necessary to access 

files store on multiple data servers. 

 A set of storage access protocols is used 

by clients to directly access data servers. 

The PNFS standard presently defines three 

categories of storage protocols: file-based 

(RFC5661), block-based (RFC5663), and 

object-based (RFC5664). The storage 

access protocol that specifies how a client 

accesses data from the associated storage 

devices according to the matching 

metadata servers 

PNFS Performance Evaluation and Advantages 

 PNFS reduces the performance restricted 

access in traditional NAS systems by 

allowing the clients to read and write data 

directly and in parallel, to and from the 

physical storage devices. The NFS server 

is used only to control metadata and 

coordinate access, permitting incredibly 

fast access to very large data sets from 

many clients. When a client desires to 

access a file it first queries the metadata 

server which provides it with a map of 

where to get the data and with credentials 

regarding its rights to read, modify, and 

write the data. Once the client has those 

two components, it speaks directly to the 

storage devices when accessing the data. 

With traditional NFS every bit of data 

flows through the NFS server – with PNFS 

the NFS server is detached from the 

primary data path allowing free and fast 

access to data. All the advantages of NFS 

are maintained but bottlenecks are 

removed and data can be accessed in 

parallel allowing for extremely fast 

throughput rates.  

 Parallel NFS that combines the advantages 

of NFS with the massive transfer rates 

proffered by parallelized input and output 

(I/O). Using PNFS, file systems are shared 

from server to clients as before, but data 

does not bypass through the NFS server. 

As a alternative, client systems and the 

data storage system attach openly, 

providing numerous parallelized, high-

speed data paths for massive data 

transfers.[20]. 

 

More specifically, a Read and write operation is a 

series of protocol operations: 

 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             29 

Figure 8. PNFS two Clients handling the Read and write 

operations. 

 

Integrity and Privacy Protection to PNFS 

The integrity and the privacy to the distributed 

parallel network can be achieved by: 

 

Parallel Sessions 

Parallel sessions are between the clients and the 

storage devices in the parallel Network File 

System. This is similar to the situation that once 

the adversary compromises the long-term secret 

key, it can learn all the subsequence sessions. If an 

honest client and an honest storage device 

complete matching sessions, they calculate the 

same session key.  

 
Figure  9. Parallel sessions 

 

Authenticated Key Exchange 

In an authenticated key exchange, there is the 

extra goal that the two parties end up sharing a 

common key known only to them. This secret key 

can then be used for some time later to provide 

privacy, data integrity, or both.  

 

                                        
Figure 10. Authenticated Key Exchange 

 

Forward secrecy 

An authenticated key exchange protocol provides 

perfect forward secrecy if disclosure of long-term 

secret keying material does not compromise the 

secrecy of the exchanged keys from previous runs. 

The property of perfect forward secrecy does not 

apply to authentication without key exchange. 

 

 
Figure 11. After authenticated key Exchange 
 

Server Authentication 

The admin can accept the new user request and 

also block the users. The users can upload the file 

to the network. And the admin can allow the files 

to network then only the file can store in storage 

devices. If the file uploaded by the user is not 

permitted from the Server means the file cannot 

be uploaded by the Client. 

 
                   Figure 12. Sever Authentication 

 

Implementation of AKE Protocols for PNFS 

There are three variants of PNFS-AKE protocols 

PNFS-AKE-I- This protocol allows the client to 

generate their own session keys. A session key is 

pre-computed by the client for each v and 

forwarded to the corresponding storage device in 

the form of an authentication token at time t 

(within v).  A Symmetric key encryption is used 

to protect the  

Confidentiality of secret information used in the 

protocol [1]. 

PNFS-AKE-II- The client C and the storage 

device Si each now chooses a secret and pre-

computes a Dif- fie-Hellman key component. A 

session key is then generated from both the Dif-

fie-Hellman components. Upon expiry of a time 

period v, the secret values and Dif-fie-Hellman 

key components are permanently removed, such 

that in the event when either C or Si is 

compromised, the attacker will no longer have 

access to the key values required computing past 

session keys [1]. 

PNFS-AKE-III- Enhance PNFS-AKE-II with a 

key update technique based on any efficient one-

way function, such as a keyed hash function. This 

protocol achieves full forward secrecy. 

 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             30 

Establishment of secure channels between Client 

and Metadata server  

 Obtain Metadata server’s certificate  

 Verified that it is signed by trusted CA.  

 Generate random Session Symmetric key.  

 Encrypt the session key with metadata 

server’s public key.  

 Send Encrypted key to the metadata server 

 

Establishment of secure communication between 

clients and parallel servers through the help of 

Metadata server. 

PNFS-AKE-I is illustrated as [1] 

 
 

The diagrammatic representation of the PNFS 

AKE-I is: 

 

 
Figure 13: PNFS-AKE-1 

 

PNFS-AKE-II is illustrated as [1] 

 

 

 

PNFS-AKE-III is illustrated as [1] 

 
 

Phase1 for each validity period v  

 

i. Each  server distribute some key materials 

to Metadata server .Each Si generate Diffie  

Hellman key component gsi . This is 

forwarded to and stored by Metadata 

server. 

SXM:IDSₓ , Ԑ(KMS₁ , g
s1) 

ii. Similarly Client generates its Diffie 

Hellman Key componentgc and send to 

Metadata server.  

CM : IDc  , Ԑ(KCM ;gc ) 

iii. M sends  all key components to C for N 

storage  servers that it may access within a 

periodv  

MC: Ԑ( KCM ;gs1 ,........gsi ) 

iv. M also sends  Client‟s Diffei Hellman 

Components to gc to each Si. 

MSX : Ԑ(KMSₓ ;IDC ,IDSₓ,V, gc ,gs1) 

v. After this stage C and Si are able to agree  

a Diffei Hellman value  gc
si e) C and Si set 

F1(gc
si, IDC, IDSi, v ) as their initial shared 

secret state K0CSi 

 

Phase2  for each access request at time t 

 

i. C submits an access request M which 

contains all identities of storage devices Si  

CM :IDC ,IDS₁ ,..........IDSₓ 

ii. M issues layout σi( Layout contains 

Client‟s identity, File object mapping 

information and Access permissions)  

MC: σ1 ....... σn 

iii. Cestablish secure session with Si by 

computing session key  Sk
ij,z.   

SX  = Ԑ(KMSₓ ;IDC ,IDSₓ,V, gc ,gs1) 

C sends encrypted layout and identity  and 

time to Si  

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             31 

CSx : σx  , Ԑ(skx
j,0 ;IDc,t) 

iv. Si decrypt encrypted message and check if 

the layout and IDc matches the identity of 

C and if t is within the current validity 

periodv.  

v. If all previous checks pass , Si replies C 

with a key confirmation message using 

key Sk
ij,0 

vi. Both C and Si then set and update their 

internal shared secret state as K jCSi 

 

RESULTS 

 
Figure 14. The Secret keys stored at KDC 

 

The initial shared key is then used to derive 

session keys in the form of a keyed hash chain. 

The associated session key is forward secured. 

 

 
Figure 15. Comparison of the Storage Server Secret keys with the original Keys 

 

For each storage server Si, M issues a layout Si. C 

then forwards the respective layouts, 

authentication tokens, and encrypted messages to 

all n storage devices. Secure MAC scheme that 

takes as input a secret key k and a target message 

m, and output a MAC tag 

 

 

 
Figure 16. Comparison of the Meta Data Server Secret keys with the original Keys 

 

When client submits an access request to Meta 

Data Server, the request contains all the identities 

of storage Servers Si that Client wishes to access 

both C and Si to generate and exchange fresh 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 



Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             32 

Diffie-Hellman components for each access request at time t. 

 

 
Figure 17. Comparison of the Client keys with the original Keys 

 

Meta Data Server also distributes clients chosen 

Dif-fie-Hellman component to each Storage 

server. Hence, both client and storage server are 

able to agree on a Dif-fie-Hellman value. 

 

CONCLUSION 

This paper implements the AKE protocols for 

distributed Systems. Proof has been shown that 

the network is secure against passive and active 

attacks. The future work of this paper is to 

implement these AKE protocols for Wireless 

Networks for all security services i.e. 

authentication, authorization, and confidentiality 

and so on. 

 

REFERENCES 

 

1. Hoon Wei Lim and Guomin 

Yang”Authenticated Key Exchange 

Protocols for Parallel Network File 

Systems” IEEE transactions on parallel 

and distributed systems, vol. 27, no. 1, 

january 2016 ,pp.92-105. 

2. Michel Abdalla, David Pointcheval., 

“Simple PasswordBased Encrypted Key 

Exchange Protocols.” Topics in 

Cryptology – CTRSA 2005, Volume 3376 

of Lectures Notes in Computer Science, 

San Francisco, CA, USA, Feb. 14–18, 

2005. Springer-Verlag, Berlin, Germany, 

pages 191–208. 

3. Sai Kumar ,P. Subhadra., “User 

Authentication to Provide Security against 

Online Guessing Attacks.” PARIPEX - 

Indian Journal Of ResearchVolume : 2  

Issue : 2 ,february 2013 ISSN - 2250-

1991,pp 129-130. 

4. Anupam Datta1, Ante Derek1, John C. 

Mitchell1, and Bogdan Warinschi2., “Key 

Exchange Protocols: Security Definition, 

Proof Method and Applications .” 

International Association for Cryptologic 

Research (IACR) 2006/056 pp 1-33. 

5. R.S.RamPriya, M.A.Maffina., “A Secured 

and Authenticated Message Passing 

Interface for Distributed Clusters.” IIID 

security and privacy symposium feb28-

mar2 2013 ,prabhu Goel Research center 

for computer and internet security IIT 

Kanpur ,Pp1-2. 

6. Feng Hao1 and Peter Ryan2., “J-PAKE: 

Authenticated Key Exchange Without 

PKI”, International Association for 

Cryptologic Research (IACR), 

2010/190,pp 1-24. 

7. Bruno Blanchet., “Automatically Verified 

Mechanized Proof of One-Encryption Key 

Exchange” International Association for 

Cryptologic Research (IACR),2012/173,pp 

1-24. 

8. Feng Hao⋆1 and Peter Ryan2.,“Password 

Authenticated Key Exchange by Juggling” 

, IEEE P1363: Research Contributions, 

April 2008,pp.1-12. 

9. Authenticated Key Exchange Secure 

Against Dictionary Attacks M. Bellare, D. 

Pointcheval, and P. Rogaway, Advances in 

Cryptology  Eurocrypt '00, Lecture Notes 

in Computer Science Vol. , B. Preneel ed., 

Springer-Verlag, 2000,pp.1-16. 

10. Scalable security for petascale parallel file 

systems, A. W. Leung, E. L. Miller, and S. 

Jones, in Proc. ACM/IEEE Conf. High 

Perform. Network Compute, Nov. 2007, 

p.1-12. 

11. “The Kerberos version 5 GSS-API 

mechanism,” J. Linn, Internet Eng. Task 

Force (IETF), RFC 1964, Jun. 1996. 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 

http://www.iacr.org/
http://www.iacr.org/
https://eprint.iacr.org/2006/056
http://www.iacr.org/
http://www.iacr.org/
https://eprint.iacr.org/2006/056
http://www.iacr.org/
http://www.iacr.org/


Usharani et al. \ Integrity and Privacy through Authentication Key Exchange Protocols for Distributed Systems 

© 2015, AJCSE. All Rights Reserved.                                                                                                                                                             33 

12. M. Bellare, D. Pointcheval, and P. 

Rogaway. Authenticated key exchange 

secure against dictionary attacks. In 

EUROCRYPT, pages 139–155, 2000.  

13. M. Bellare and P. Rogaway. Entity 

authentication and key distribution. In D. 

R. Stinson, editor, CRYPTO, volume 773 

of Lecture Notes in Computer Science, 

pages 232–249. Springer, 1993.  

14. M. Bellare and P. Rogaway. Provably 

secure session key distribution: the three 

party case. In STOC, pages 57–66. ACM, 

1995. 

15. R. Canetti and H. Krawczyk. Analysis of 

key-exchange protocols and their use for 

building secure channels. In B. Pfitzmann, 

editor, EUROCRYPT, volume 2045 of 

Lecture Notes in Computer Science, pages 

453–474. Springer, 2001.  

16. K.-K. R. Choo, C. Boyd, and Y. 

Hitchcock. Examining indistinguishability-

based proof models for key establishment 

protocols. In B. K. Roy, editor, 

ASIACRYPT, volume 3788 of Lecture 

Notes in Computer Science, pages 585–

604. Springer, 2005. 

17. Pointcheval D. and Zimmer S., “Multi-

Factor Authenticated Key Exchange,” in 

Proceedings of Applied Cryptography and 

Network Security, pp. 277-295, 2008. 

18. C. Adams. The simple public-key GSS-

API mechanism (SPKM). The Internet 

Engineering Task Force (IETF), RFC 

2025, Oct 1996. 

19.  
https://www.ibm.com/developerworks/libr

ary/l-network-filesystems/index.html 

20. https://www.ibm.com/developerworks/libr

ary/l-pnfs/index.html 

21. http://searchenterprisedesktop.techtarget.c

om/definition/Network-File-System 

22. https://storagegaga.wordpress.com/categor

y/nfs/ 

23. https://en.wikipedia.org/wiki/Clustered_fil

e_system#Distributed_file_systems 

24. A. Adya, W.J. Bolosky, M. Castro 

“FARSITE: Federated, Available, and 

Reliable Storage for an Incompletely 

Trusted Environment”, Appears in 5th 

Symposium on Operating Systems Design 

and Implementation (OSDI 2002), Boston, 

MA, December 2002,pp.1-14 

25. K. Aguilera, Minwen Ji, Mark Lillibridge” 

Block Level Security for Network-

Attached Disks Marcos “HP Systems 

Research Center∗ Palo Alto, CA,pp.1-18. 

26. Ran Canetti and Hugo Krawc 

A
JC

S
E

, 
Ju

ly
-A

u
g
, 
2
0
1
7
, 
V

o
l.

 2
, 
Is

su
e 

4
 

 

https://www.ibm.com/developerworks/library/l-network-filesystems/index.html
https://www.ibm.com/developerworks/library/l-network-filesystems/index.html
https://www.ibm.com/developerworks/library/l-pnfs/index.html
https://www.ibm.com/developerworks/library/l-pnfs/index.html
http://searchenterprisedesktop.techtarget.com/definition/Network-File-System
http://searchenterprisedesktop.techtarget.com/definition/Network-File-System
https://storagegaga.wordpress.com/category/nfs/
https://storagegaga.wordpress.com/category/nfs/
https://en.wikipedia.org/wiki/Clustered_file_system#Distributed_file_systems
https://en.wikipedia.org/wiki/Clustered_file_system#Distributed_file_systems

	Figure 3: The client-server architecture of NFS
	Figure 6: A simple NFS configuration
	Practical uses of NFS
	NFS Problems
	i. Synchronization:
	ii. Reliability Issues:

	1. Hoon Wei Lim and Guomin Yang”Authenticated Key Exchange Protocols for Parallel Network File Systems” IEEE transactions on parallel and distributed systems, vol. 27, no. 1, january 2016 ,pp.92-105.

