
*Corresponding Author: B. Usharani, Email: ushareddy.vja@gmail.com

RESEARCH ARTICLE

www.ajcse.info

 Asian Journal of Computer Science Engineering 2016; 2(1):19-23

A Study on Mapping Semi-Structured Data to a Structured Data for Inverted Index Compression

1B.Usharani*

1Dept. of CSE, INDIA

Received on: 02/09/2016, Revised on: 22/12/2016, Accepted on: 23/02/2017

ABSTRACT
Semi-structured data is used for representing the data over the internet. In this paper, an analysis is

performed on how to convert XML documents to tuples, translating the semi-structured queries to SQL

queries, and converts the results back to XML.

Keywords: Relational, Semi-Structured data, structured data, XML.

INTRODUCTION

Semi-structured is emerged as important because

 There is the need to handle different data

sources that cannot be constrained by the

fixed schemas.

 There is the need to maintain format for

the data exchanges between remote

databases.

There are different approaches to store semi-

structured data and execute queries on the

corresponding semi-structured data.

1. DBMS: In this approach, semi-structured

data are mapped to tables in the relation

schemas, and queries in a semi-

structured data are translated into SQL

queries.

2. OODBMS: In this approach the semi-

structured data is mapped with Object-

oriented databases. Semi-structured

queries are translated to OOqueries.

3. Special Purpose DBMS: Special data

structures are used to store and to put the

queries .Examples are Lore etc.

The key attributes that distinguish semi-structured

data over the structured data.

1) Lack of a rigid schema

2) Nested data structures.

The Structured data requires rigid schema and it

should defined in advance, semi-structured data

does not require any prior information about the

definition of a schema in advance. Structured data,

represents data in a table, semi-structured data can

contain hierarchies of information.

Semi-structured data is usually stored in flat files,

but it is difficult to query or update To store and

use the Semi-structured data easily, there are two

options.

1) Convert semi-structured data to a rigid

schema before using it.

2) Store semi-structured data in a relational

table. This approach simplifies loading of

semi-structured data.

REPRESENTATION OF XML DATA AS A

GRAPH
The XML document can be represented as a

graph. Each XML element is represented as a

node and the node is labeled with an id. Element

to the sub-element relationships are represented

by the edges in the graph and labeled by the name

of the sub-element. To represent the order of sub-

elements in the graph, outgoing edges of the graph

is recorded. Values of an XML document are

recorded as the leaves in the graph. Different

approaches are used to store XML data in a

structured form i.e in the relational database and

discussed in the next section. The XML document

is given below.

<? xml version="1.0" encoding="UTF-8"?>

<information>

 <tuple>

 <mid>m1 </mid>

 <moviename> toy story

(1995)</moviename>

 <generes>comedy drama </generes>

 <url> http://us.imdb.com/M/title-

exact?Toy%20Story%20</url>

http://www.ajcse.info/

Usharani B. et al.\ A Study on Mapping Semi-Structured Data to a Structured Data for Inverted Index Compression

20

© 2015, AJCSE. All Rights Reserved.

 </tuple>

 <tuple>

 <mid>m2 </mid>

 <moviename>jumanji (1995) </moviename>

 <generes>animation childrens comedy

</generes>

 <url>http://us.imdb.com/M/title-

exact?Jumanji%20</url>

 </tuple>

…………..

</information>

XML Tree for the XML document

Fig 1: XML Tree Structure representation

STORING XML DOCUMENTS IN A

RELATIONAL DATABASE

Different mapping techniques are discussed in this

section that can be used to store the XML

document in

a relational database.

ASCII Approach

Semi-structured data is stored as a normal text.

But this approach has several major drawbacks.

 The XML files in ASCII format need to be

parsed every time when they are accessed.

 The original XML document must be

memory-resident during query processing.

 Update operations are very difficult to

implement.

Figure 2: XML TREE

The Edge Table Approach

The directed graph of an XML file is stored in

Edge table. Every node in the directed graph is

assigned an id. Each tuple in the edge table

corresponds to one edge in the directed graph and

contains the ids of source and target of the edge,

the tag of target element, and an ordinal number

that is used to record the order of the children

nodes. When an element has only one child, the

text is stored with the edge.

The edge table has the following schema:

Edgetable (sourceID, ordinal, name,flag, targetID)

In this appraoch, user queries are written directly

in SQL. Path expressions are evaluated by

repeatedly joining the edge table with itself, and,

eventually, with the value tables. [4,6]

The sourceID column is used for forward

traversal.

The name,targetID column is used for backward

traversal.

DrawBack:

information

tuple

mid mname generes url

tuple

mid mname generes url

..........

information

tuple

m1 toystory
comedy
drama

http://us.imdb.com/
M/title-

exact?Toy%20Story%
20

tuple

m2 jumanji
animation
childrens
comedy

http://us.imdb.com/
M/title-

exact?Jumanji%20

..........

A
JC

S
E

,
Ja

n
-F

eb
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

1

Usharani B. et al.\ A Study on Mapping Semi-Structured Data to a Structured Data for Inverted Index Compression

21

© 2015, AJCSE. All Rights Reserved.

 This approach is very large, too expensive,

and more redundancy.

 The Edge approach is not suitable for

heavy queries because joins with the Edge

table becomes expensive

Advantage:

 Reduces the no: of tables in the database

and the amount of disk space consumed.

Sourc

eID

Ordinal Name Flag TargetID

1 101 mid String M1

1 102 mname String toystory

1 103 generes String comedydrame

1 104 url String http://us.imdb.com/M/title-

exact?Toy%20Story%20

2 105 Mid String M2

2 106 mname String jumanji

2 107 Genere

s

String Childrenanimationcomedy

2 108 url String http://us.imdb.com/M/title-

exact?Jumanji%20

…… ………. ………

…..

………

…….

……………………………

…………..

Figure 3: EdgeTable for figure2

The Attribute Table Approach

This approach corresponds to the horizontal

mapping of the Edge Table. A attribute table is

maintained for each existing label [4,6].

The schema for the attribute table is given below:

Attributetable(sourceID, ordinal, targetID)

Drawback:

 It is so complex to do search and perform

the update.

 The attribute approach divides a XML file

into many relations and increases the disk

space.

 Difficult to write the XML query in SQL.

SourceID Ordinal TargetID

1 101 M1

2 105 M2

3 109 M3

Figure 4: Attribute Table for mid for figure2

The Universal Table Approach

This approach generates a single universal table to

store all the edges. The universal table matches

the result of an outer join of all attribute tables [4, 5,

6, and 7]. The universal table has the separate

columns for the entire attribute name that occur in

the XML document.

The schema for the universal table is:

Universaltable(sourceID,ordinal(n1),targetID(n1),

ordinal(n2),targetID(n2),……..,ordinal(nm),target

ID(nm));

Drawback:

 The universal table has fields which are set

to null, and it is a deal of redundancy.

 Nobody knows the no: of attributes and the

attributes’ name in some cases.

 Performs badly for heavy queries.

Source Ordina

l(mid)

Target

(mid)

…

…

Oridinal(gene

res)

Target(ge

neres)

.

.

..

1 101 M1 103 comedydr

ama

1 101 M2 107 childrena

mimation

comedy

2 105 M3 111 actionthril

ler

3 109 M4 115 animation

Figure 5: Universal Table for figure2

The normalized universal approach

This approach is an alternate of the universal

approach [4, 7].The difference is that the multi-

valued attributes are stored in separate overflow

tables in the normalized universal approach.

The schema for the universal table is:

Universalnormtable(sourceID,ordinal(n1),targetID

(n1),ordinal(n2),targetID(n2),……..,ordinal(nm),t

argetID(nm));

Overflowtable(sourceID,ordinal,targetID);

Eg:
Source Ordina

l(mid)

Target

(mid)

…

…

Oridinal(gene

res)

Target(ge

neres)

.. ..

1 101 M1 103 comedydr

ama

2 105 M2 107 childrena

mimation

comedy

3 109 M3 111 actionthril

ler

SourceID Ordinal TargetID

1 101 101

1 105 105

2 109 109

Figure 6: Universal normalized Table, Overflow table for

figure 2

STORED

This approach uses the concept of the OEM model

and the relational database management system

to store and manage semi-structured data [2, 3].

Drawback:

 Many fields are set to null, and it leads to

redundancy

 Does not handle multi-valued attributes,

when ever retrieving the multi-valued

attributes in uses join operation which is

expensive.

 This approach may not store all data.

MID MNAME GENERES URL

A
JC

S
E

,
Ja

n
-F

eb
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

1

Usharani B. et al.\ A Study on Mapping Semi-Structured Data to a Structured Data for Inverted Index Compression

22

© 2015, AJCSE. All Rights Reserved.

M1 Toystory comedydrama http://us.imdb.com/M/title-

exact?Toy%20Story%20

M2 jumanji childrenanima

tioncomedy

http://us.imdb.com/M/title-

exact?Jumanji%20

 Figure 7: STORED storage for figure 2

Shore

Stores each XML element of the XML file as a

separate object [1, 6].

The drawback of this approach is, the file needs to

be frequently updated.

Figure 8: SHORE storage for figure 2

B-tree approach

This approach eliminates the drawback of the

Shore approach. Every object maintains a key.

[1,6].The B-tree automatically manages the disk

space in leaves and there is no need to move

object when the file size is updated .

Drawback:

But when doing search, we do not know the key-

value of the object.

 Figure 9: B-TREE storage for figure 2

Inlining approach (DTD to Relational Schema)

Inlining- Put as many sub-elements of an element

as possible into a single relation.

Techniques to translate XML DTD to Structured

tables are:

 Basic Inlining Technique

 Shared Inlining Technique

 Hybrid Inlining technique

Basic Inlining Technique

 Every DTD element maintains a relation.

Advantages

 Reduces the no: of joins.

Disadvantages

 Generates many relations

 Separate schema for each element.

Shared Inlining Technique

 Identify commonly used element nodes and share

them by creating separate relations for them.

Ensure that an element node is presented in

exactly one relation

Problems with Shared

Many joins are required

Advantages

 Reduces the no: of joins for the queries

Disadvantages

B-Tree Root

1….210,-----
-

1…

Key

-1

Info

rmat

ion

Pare

nt=n

ull

Prev

=nul

l

Nex

t=nu

ll

First

chil

d=

2

Last

chil

K

e
y-

2
tu

pl

e

Pa

re

nt

=1

Pr

ev

=n

ull

Ne

xt

=3

Ke

y-
20

1
mid

Pare

nt=2

Prev

=nul

l

Nex

t=20

2

Text

=m1

Ke

y-3
tupl

e

Pare

nt=1

Prev

=2

Nex

t=4

First

chil

d=

206

Last

chil

d=2

09

Ke

y-
21

0
gen

eres

Pare

nt=3

Prev

=nul

l

Nex

t=21

1

Text

=ani

mati

on

0

1

Length=00 Tuple Parent=1 Prev=null Next=null Firstchild=null Lastchild=null

Tuple Parent=1 Prev=null Next=3 Firstchild=201

Lastchild=205

Tuple Parent=1 Prev=2 Next=4 Firstchild= 206

Lastchild=209

mid mname generes url mid mname generes url

……
.

Length=00Information Parent=null Prev=null Next=null Firstchild= 2 Lastchild= 200

mid

Parent=2

Prev=null

Next=202

Text=m1

generes

Parent=3

Prev=null

Next=211

Text=animatio

n childrens
comedy

………..

A
JC

S
E

,
Ja

n
-F

eb
,
2
0
1
7
,
V

o
l.

 2
,
Is

su
e

1

Usharani B. et al.\ A Study on Mapping Semi-Structured Data to a Structured Data for Inverted Index Compression

23

© 2015, AJCSE. All Rights Reserved.

 Extra joins are required.

Hybrid Inlining Technique

 Inlines some elements that are shared in

the Shared Technique.

Advantages

 Reduces the no: of joins.

Disadvantages

 Requires more sub-queries in SQL.

CONCLUSION

This paper presents a view for storing the

information of the XML document in structured

databases. In this paper, different mapping

schemes are discussed to store XML data in a

rigid schema i.e in the structured database. For

small datasets, Edge-table approach is the suitable

one. In future, the Edge-table approach is

implemented for constructing the inverted index.

REFERENCES

1. M. Carey, D. DeWitt, J. Naughton, M.

Solomon, et. al, Shoring Up Persistent

Applications, Proc. of the 1994 ACM

SIGMOD Conference

2. Alin Deutsch, Mary F. Fernandez, and Dan

Suciu. Storing Semistructured Data in

Relations, ICDT’99

3. Alin Deutsch, Mary F. Fernandez, and Dan

Suciu. Storing semistructured data with

STORED. In SIGMOD 1999, Proceedings

ACM SIGMOD International Conference

on Management of Data, June 1-3, 1999,

Philadephia, Pennsylvania, USA, pages

431-442, 1999

4. D. Florescu, D. Kossman, A Performance

Evaluation of Alternative Mapping

Schemes for Storing XML Data in a

Relational Database, Rapport de

Recherche No. 3680 INRIA,

Rocquencourt, France, May 1999

5. Daniela Florescu, Donald Kossmann:

Storing and Querying XML Data using an

RDMBS. IEEE Data Engineering Bulletin

22(3): 27-34(1999)

6. Feng Tian, David J. DeWitt, Jianjun Chen,

Chun Zhang, The Design and Performance

Evaluation of Alternative XML Storage

Strategies, 1999

7. Jeffrey D. Ullman. Principles of Database

and Knowledgebase Systems, Volumes I,

II. Computer Science Press, Rockville

MD, 1989.

A
JC

S
E

,
Ja

n
-F

eb
,
2
0
1
7
,

V
o
l.

 2
,
Is

su
e

1

