
© 2022, AJCSE. All Rights Reserved 1

REVIEW ARTICLE

A Deep Dive into Effective Database Migration Approaches for Transitioning
Legacy Systems in Advanced Applications

Dhruv Patel*, Ritesh Tandon
 Independent Researcher

Received on: 15-03-2022; Revised on: 01-05-2022; Accepted on: 20-05-2022

ABSTRACT
The problem with legacy systems in the age of digital transformation is that they are most of their
enterprises and public sector services passing pipes, and the technology that serves as their back bone
is most of the time too old and outdated to grow, as all of us know that most of their enterprises are
growing, not only they but also so are the public sector services. This paper presents the urgent demand
for updating these systems, advocating for moving relational databases to modern platforms. The
characteristics of legacy systems are addressed, what motivates such transformation, several reengineering
strategies such as rehosting, replacing, mitigation, and retargeting. The data migration strategy along
with best practices for a successful execution is provided along with a complete overview of database
migration processes (including schema translation and data transformation). The paper also brings up
that advanced technologies such as the advanced message queuing protocol and DevOps practices play
a positive part in smoothing the migration process. It analyzes the various migration approaches, that is,
rehosting, refactoring, rebuilding, replacing and their cost, risk, alignment to organizational goals, and
so forth. Through this study, it strives to provide the companies with the strategic framework for their
realization of legacy infrastructure replacement, which should be of scalable, secured, and ready for
future technology advancements systems.

Key words: Cloud adoption, Database migration, Legacy systems, Modernization strategies,
Reengineering, Server migration

INTRODUCTION

Legacy systems are important, but fundamental
systems, and these are not easy to keep up with
the needs of current applications. With the rise of
cloud-based and moving to completely distributed
and artificial intelligence (AI)-powered platform,
there is no room for less efficient database migration
strategy.[1,2] Legacy databases, typically rigid,
monolithic, and resource-intensive, pose significant
challenges in terms of performance, integration,
and maintainability.[3] Migrating these systems to
modern environments enables organizations to
harness enhanced scalability, improved security,
real-time analytics, and operational efficiency.
Moving data from the source relational database
(RDB) to the target RDB, including data
transformation and schema translation, is known

Address for correspondence:
Dhruv Patel
E-mail: dp270894@gmail.com

as RDB migration. Legacy migration has been
the foundation of several solutions since 1990.
Many software companies developed their
own migration process solutions for their key
products as information technology developed.[4]
The main reason for the migration is to turn the
current system into a developed system that meets
the needs of the business. The next problem is
redefining the current storage and database system
in terms of hard-to-understand code.[5,6] There is
a rule in the business that during the migration,
the source and target databases will often have
different structures or data will not match up
across multiple data sources. Due to this issue,
many studies and the creation of migration tools
have continuously come up with a full answer
for the data migration methodology for migration
projects. The whole process of moving a database
is broken up into several steps that are done one at
a time. With this method, the database migration
takes into account the number of rows, columns,
and other information from the source database.

Available Online at www.ajcse.info
Asian Journal of Computer Science Engineering 2022;7(4):1-9

ISSN 2581 – 3781

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 2

Legacy tools are also used to help the government
provide services to the people. The methods that
have changed over time are still used because
they are good for business in the public sector.[7]
It keeps years of data that are needed for daily
operations and important tasks for public
administration. But because technology changes
so quickly, it’s harder for the government to use
these tools. People in the public sector now want
to access information across organizations and
countries, but old methods cannot keep up. People
have pointed out that these systems make it harder
for the government to come up with new ideas that
are needed to keep up with changes in technology
around the world.[8] As a result, these systems
need to be improved so they can keep helping the
public sector provide services.
The old programs were created using technologies
such as mainframes, SAP, and others, and they
still do important work for a business.[9] There
have been big changes in technology lately, so old
systems need to be replaced with new ones so that
business applications can be made.[10] On the other
hand, there is operational risk that could hurt the
whole system if it is not handled well.

Structure of the Paper

The structure of this paper is as follows:
Section II, understanding legacy systems and
modernizing. Section III discusses the need for
database migration, highlighting the benefits of
transitioning from legacy databases to modern
systems. Section IV presents the different
strategies and tools available for migrating legacy
systems. Section V reviews literature and case
studies. Section VI: Conclusions with findings
and future research directions.

UNDERSTANDING LEGACY SYSTEMS
AND MODERNIZING

Legacy systems are outdated technologies that still
perform critical business functions but are built on
obsolete platforms. They often come with issues
such as high maintenance costs, limited scalability,
and security risks. Despite this, organizations
continue to use them because they hold valuable
data and support key operations. Modernizing
these systems means upgrading, transforming,
or replacing them to align with current business

needs. This improves performance, enhances
security, and allows integration with modern
tools. The push for modernization is driven by
digital transformation, cloud adoption, customer
expectations, and regulatory compliance. Choosing
the right approach, whether rehosting, refactoring,
rebuilding, or replacing, depends on the company’s
goals and resources. Effective modernization helps
that businesses become more agile, efficient, and
future-ready while reducing operational risks.[11]

Definition and Characteristics of Legacy
Systems

A legacy system is an old or out-of-date piece
of technology, software, or hardware that an
organization still uses because it still does what
it was made to do.[12] Systems that are too old are
usually not supported or managed anymore, and
they cannot be improved much.
•	 A legacy system is outdated technology or

software still in use because it fulfills its
intended function

•	 These systems are often difficult to replace
due to their critical role in operations, lack of
documentation, and intertwined dependencies

•	 Over time, multiple changes by different
personnel make system comprehension harder

•	 IT managers must evaluate which legacy
systems are essential and how much
maintenance or replacement they require to
reduce operational risks.

Reengineering Strategies for Upgrading
Legacy Systems

Using different reengineering processes to replace
and update old systems with new software-based
solutions.[13]

1. Re-hosting
 This is called “re-hosting,” and it means using

old software on a new server without making
any changes. This will lower the cost of
keeping old gear running.

2. Re-placing
 Once an existing system cannot meet all of an

organization’s needs, replacement methods
are used. Rewriting old software or adding
new features to it is how replacement is done
in software legacy systems. This program has
been used before and works well.

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 3

3. Mitigation
 New versions of software will have new

features added to them to fix bugs in older
versions. This method is called reduction. This
is a way to move old systems to environments
that are more flexible.[14]

4. Re-targeting
 The legacy system is being changed into a new

system with some extra features and functions.
Making a new hardware platform out of a
system platform.

Transition from Legacy System to New System

Modernizing legacy systems is a strategic
necessity for businesses striving to remain
competitive, scalable, and secure in a technology-
driven world. The process involves migrating to
a new system that overcomes the shortcomings
of legacy infrastructure while ensuring minimal
disruption to existing business processes.
Modernizing a legacy system means making
old software and programs work with today’s
technology and business needs, as shown in
Figure 1. This does not always mean that the
running systems or apps will change. Most of the
time, old hardware is what gets in the way, which
makes it easy for business-critical apps to fail.
•	 Modernization improves these systems

by moving old ones to new platforms. Its
benefits include streamlining IT processes,
lowering maintenance costs, and improving
performance.[15]

•	 These changes also improve the systems’ ability
to work with new technologies. Modernizing
businesses prepares them to use new technologies
such as AI, big data, and cloud computing.

Need for Modernization

This is one of the most common ways to update
an app, and it’s also the simplest way to make

sure that the product will keep working for years
to come. It requires moving the system (usually
by re-hosting it using cloud solutions) and making
a few small improvements. This includes making
changes to the user interface (UI) and user
experience (UX), improving speed, and moving
the database. However, this method has some
problems. The main business logic and design do
not change much because these kinds of changes
need a more invasive method. If the product’s
technology stack is pretty new and does not pose a
threat to its future growth, modernization may only
require a few small fixes or improvements. This
could mean optimizing the design or refactoring
the code.[16] No major changes were made to
the product’s business logic or UX when it was
updated or its speed was improved. New features
can be added to an existing product as soon as it is
suitable. These could be modules built just for it or
connections from a third party.

DATABASE MIGRATION: AN OVERVIEW

Moving a current database application to a different
database management system (DBMS) or service
provider is called database migration. Existing data
are exported from the current DBMS and added
to the new DBMS during this process. Although
the migrated database will probably have the same
data, the way it works with it will probably be
different,[17] This is especially true when moving
from very old systems or systems built on different
technologies, or when the new database was not
designed with the users in mind.[18]

Data Migration Strategy

A clear plan for moving data from one system to
another should include dealing with legacy data,
finding source data, and working with targets that
are always changing, making sure data quality
standards are met, coming up with the right project
methods, and learning general migration skills.[19]

The primary factors and inputs for creating a data
migration strategy are as follows:
•	 Plan for making sure that the migrated data are

correct and full after migration
•	 Iteratively moving a logical group of data is

possible with agile concepts
•	 Plans to deal with the problems that come with

the quality of the source data right now as well Figure 1: Migration from legacy system to new system

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 4

as the quality standards that the target systems
expect[6]

•	 Plan and set up a migration system with the
right checkpoints, controls, and audits so that
errors and broken accounts can be found,
reported, fixed, and closed

•	 A way to make sure that the right things are
matched up at different stages to make sure
that the migration is finished

•	 A way to pick the best tools and platforms for
the tricky nature of migration.[20]

Best Practices for Successful Migration

A good move from older databases to Microsoft
SQL server using SQL server migration assistant
(SSMA) is more complicated than just following
the steps of the move. There must be best practices
that are followed to ensure efficiency, lower risks,
and increased profits. Consider these important
best practices as it moves.[21]

•	 Comprehensive pre-migration assessment:
Before starting the transfer, it should carefully
examine the current database setup. This
includes things like knowing what the current
database layout is, what other parts depend on
it, and how to avoid potential problems

•	 Start with a pilot project: Before committing
to a full-scale project, this might want to
start with a trial migration to lower the risks.
Choose a database that is not very important or
a smaller amount of data to move first[22]

•	 Optimize the target environment: Before it
moves the data, ensure that the target SQL
server environment is optimized for speed and
scalability

•	 Focus on data integrity: Data integrity is very
important during any transfer. Use the data
validation tools in SSMA to make sure that all
the data are moved correctly and that there are
no problems between the old system and SQL
Server.

Advanced Message Queuing Protocol (AMQP)

The publish-subscribe paradigm, as described
by OASIS, is what AMQP is based on. It is an
open standard protocol that lets a lot of different
applications and systems work together, even if
they are not built the same way. It was first created
for business messaging with the goal of providing

a non-proprietary solution that could handle a lot
of message exchanges that could happen quickly
in a system.[23]

•	 This AMQP interoperability function is
important because it lets platforms that are
written in different languages send and receive
messages. This can be especially helpful in
heterogeneous systems. The two versions
of AMQP, AMQP 0.9.1 and AMQP 1.0, are
very different from each other and use very
different ways to send messages.[24]

•	 The publish-subscribe paradigm is used by
AMQP 0.9.1. It is based on the exchanges and
the message queues, which are two important
parts of an AMQP broker. The exchanges are a
part of the broker that guides the messages that
come in from writers.[25]

MIGRATION APPROACHES,
CHARACTERISTICS, AND STRATEGIES

Methods to move old systems to newer platforms,
like the cloud or newer architectures. The three
approaches of rehosting, refactoring, rebuilding,
or replacing have their own trade-off definition
in terms of complexity, costs, risk, and time.[26]
The rehosting is quick and the risk is minimal,
whereas rebuilding or replacing brings more long-
term benefits but demands more investment. That
comes down to factors like system performance,
scalability, and budget, as well as business needs,
as to what strategy to choose. A good migration
strategy causes little perturbation, is flexible,
and plays to companies’ digital transformation
requirements by being synchronized to modern
business objectives.[27] There are different migration
techniques that use different.

Characteristics of Migration Approaches

There are a large number of critical characteristics
that govern the selection of a suitable approach to
migrating legacy systems and they vary based on
the approach. The characteristics of these qualities
assist in the organization’s ability to manage cost,
risk, performance, and business continuity against
during the transformation process.
•	 Complexity: Depending on the chosen

approach, migration is a complex process.
Rehosting requires fewer changes as it is just
changing the host, whereas rebuilding requires

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 5

more changes as it involves redesign and
development[2]

•	 Cost: The method will vary the cost. However,
rebuilds or replacements are very expensive
due to the requirement of new development
and testing and rehosting is cheaper

•	 Risk level: The chances of risk are different
for rehosting carries low risk since it preserves
the system as it is, but rewriting exposes to
risk on codes, which may involve mistakes[28]

•	 Time to implement: Rehosting and
encapsulation of the request are faster,
execution wise. Due to redevelopment needs,
rebuilding or replacing a system takes more
time

•	 Scalability: Modernized systems are more
scalable. System approaches involving code
or architecture upgrades improve the system’s
ability to handle increasing demand[29]

•	 Performance improvement: Some methods do
not boost performance immediately. Rehosting
will have no impact on performance, but
refactoring and refactoring tends to improve
performance

•	 Business continuity: Approaches such as
rehosting and encapsulation ensure minimal
disruption. Full replacement may temporarily
affect ongoing business operations

•	 Integration capability: Modern systems
integrate easily with application program
interface (APIs) and cloud tools. Legacy
systems often need additional tools or custom
connectors to work with new technologies[30]

•	 Security enhancements: Migration allows
implementation of modern security standards.
Older systems are more prone to vulnerabilities
and lack updated protections.

Legacy System Modernization Approaches
and Strategy

Modernizing old systems helps businesses stay
competitive, efficient, and ready for the future.
Let’s look at the best ways to update old systems
that people who make decisions should think about.

Rehosting or lift and shift
Rehosting, also known as “Lift and Shift,” is
the process of moving parts of a program to a
different infrastructure (like the cloud or on-

premises) without changing the code or features.
A new system is only put in place for the hardware
platform below.[31] Applications from the past will
still work the same way they do now. People often
use this method to quickly move old apps to the
cloud and take advantage of its benefits without
having to change the code.

Refactoring or re-architecting
Moving and improving the current code without
changing how it works is a traditional way
to update an old system. It is easier to adapt to
new situations when refactoring a system. These
steps should be used by companies moving from
containers to microservices. Things change in
big and small ways. However, they all make the
system stronger.[32]

Rebuilding or rewriting from scratch
The process of rewriting means making a new
application from scratch while keeping the old
system’s needs and functions. Due to this, current
frameworks, codes, and tools can be used.[33]

Encapsulation
Encapsulation lets it reuse key system parts while
getting rid of old code. These parts are linked to
new access levels through APIs.[34] This way of
updating old software gives current parts a new
look and feel using the app’s features. Some parts
may need more work than others, so it is important
to plan ahead. Encapsulation works well if all
these want to do is change the interface.

API
API modernization makes it possible for old
systems to connect to and use new services and
apps. It adds to the features of an old system
without making big changes to the code. The
process is not always easy. There are easy and
complex interfaces.[35]

Cloud Migration
Apps and data are moved to cloud technology
when old systems are moved to the cloud. This
cuts costs and makes it easier to grow and change.
It often makes the machine run faster. Depending
on what the system needs, the change can happen
slowly or quickly.[36]

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 6

Service-oriented architecture (SOA)
SOA breaks down old systems into smaller
services that can be used again and again. These
can be built, put into use, and kept up to date
individually. SOA makes systems more adaptable
and scalable. It makes it easier to connect to other
services. How hard it is to implement depends on
the size and layout of the system.

Buying a new application
Finally, getting a new application is another
good way for businesses to update an old system.
They can replace the old system with the new
application. In this method, it picks a solution and
replaces it with the current program.

LITERATURE REVIEW

This section discusses the previous research on
Database Migration Approaches for Transitioning
Legacy Systems. Table 1 provides a summary of

key studies on database migration approaches
for legacy systems, highlighting methodologies,
findings, and associated challenges. It offers
insights into various frameworks, strategies, and
practical applications across domains.
Althani and Khaddaj suggested that quality be
built into the transfer process, which would have
a big effect on risk and cost. This paper does a
systematic review of different ways to update
old systems, ranging from easy wrapping to
full migration. When choosing a moderation
approach to meet the needs of the migration, the
quality aspects of the process need to be taken
into account. To cut costs and make them more
flexible, they need to be updated and moved to
new technological settings.[37]

Wijaya and Akhmadarman to help with the data
migration process, the suggested framework
includes algorithm migration, model migration,
and migration schemes. The proposed framework
can move data in the real operating world after it
has been tested and evaluated. To fix this problem,

Table 1: Literature review on database migration approaches for transitioning legacy systems in advanced applications
References Study on Approach Key findings Challenges and

limitations
Future work

Althani and
Khaddaj
 (2017)[37]

Quality integration
in legacy system
migration

Systematic review
of modernization
strategies (wrapping to full
migration)

Emphasizes
considering quality
aspects in selecting
a migration
strategy to reduce
cost and risk

Quality factors are
often overlooked;
they require a tailored
strategy for each case

Develop adaptive
frameworks that
incorporate quality metrics
dynamically into migration
decision-making

Wijaya and
Akhmadarman
 (2018)[38]

Development of a
general data migration
framework

Framework with algorithm
migration, model
migration, and migration
schemes

Provides complete
stages of data
migration; validated
in operational
environment

Existing frameworks
lack completeness;
general frameworks
still need real-world
robustness

Extend framework
testing across varied
industry scenarios to
enhance robustness and
completeness

M’Baya et al.
 (2017)[39]

Assessment of legacy
systems using quality
metrics

Legacy System Assessment
Conceptual Framework
with tools

Helps maintainers
choose
modernization
strategies using
quality indicators

Full project lifecycle
must be addressed;
integration of the
toolkit into the process
can be complex

Streamline toolkit
integration into standard
software engineering
workflows and lifecycle
models

Khan et al.
(2020)[40]

Secure cloud
migration of industrial
control systems

Minimal interruption,
cloud-based migration
framework

Suitable for
real-time systems;
ensures safety and
continuity

Needs further
validation in
diverse industrial
environments

Conduct real-world testing
across various critical
infrastructure domains for
broader applicability.

Preti et al.
(2021)[41]

Gradual migration
of public safety
legacy systems to
microservices

Database sharing
strategies during
monolith-to-microservice
transition

Demonstrates
co-existence and
gradual migration
benefits

Complexity in
managing shared
databases during
transition

Investigate advanced
data synchronization and
management techniques
during transitional phases.

Schnappinger and
Streit
 (2021)[42]

Cost-effective
modernization with a
limited budget

Custom transportation and
alternative strategy under
constraints

Enables legacy
language migration
without full
re-engineering

Strategy selection is
still a challenge due
to budget, technical,
and business
constraints

Explore intelligent decision
support systems for
strategy recommendation
under multi-constraint
environments.

Martens et al.
(2018)[43]

Scalable data
decomposition for
large-scale healthcare
migration

Splitting monolithic data
into independent tranches

Efficient for
large-scale
systems; applied
in the healthcare
sector migration

Technical and
cost constraints in
decomposing and
migrating huge
datasets

Research automation tools
and heuristics for scalable
and cost-effective data
tranche decomposition.

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 7

they need a general migration system that covers
all the steps of moving data. To help with moving
data, many systems have been made. By providing
a general data migration framework, the study
results will help companies or developers who
need help moving data.[38]

M’Baya et al. based on quality measure, a
legacy system assessment conceptual framework
(LSACF). To assist maintainers in the evolution
process, LSACF provides a plan that includes a
methodological approach and a functional tool.
Another common problem for large businesses is
updating old systems. Businesses need to update old
systems and perform proper modernization because
technology is changing so quickly. To adequately
choose a modernization strategy and create an
effective evolutionary system, it is necessary to
look at the whole modernization project.[39]

Khan et al. offer a way for old industrial control
systems to be moved to the cloud in a way that
is both smooth and safe. It checks to see if the
cloud can handle the real-time needs of control
operations without putting system safety at risk.
The suggested method is meant to keep industrial
processes running as smoothly as possible during
the cloud migration process, and it provides a
general framework that can be used in various
industrial sectors. Experiments with the cloud
migration method look good for systems that need
to work quickly, like synchrophasor technology.[40]

Preti et al. describe the transition plan that the
Public Safety Secretariat of Mato Grosso is
using to change its old, single-piece systems to
a microservices-based design. Even though there
are already standards for microservice projects, it
is hard to find reports on how to successfully move
from a monolithic architecture to a microservice
design over time. This is especially true when it
comes to splitting and separating legacy databases.
Their findings when they used the database
sharing techniques and migration process outlined
in this paper during a time when monoliths and
microservices lived together.[41]

Schnappinger and Streit to make things clearer
explain why the current transfer plans did not
work and suggest a different approach, keeping
in mind the limited moving funds. The old code
is instantly translated to a different programming
language by custom translation. The economy
depends on old software systems, but they are
known to be expensive to run and keep up to date.

Modern technology or languages are often used
to move these kinds of systems in order to cut
down on costs. Many transfer plans exist, but it is
still hard to pick the best one or set of plans when
there are technical, economic, and business issues
to consider.[42]

Martens et al. show a way to decompose data
in which the whole volume of data in a single
business IT application is split into separate data
migration chunks. The method for moving data
explained here is being used in one of the biggest
healthcare data migration projects in Europe right
now. It involves millions of customer records.
New enterprise IT applications must finally take
the place of old ones, both because they are more
cost-effective and better at what they do. Moving
data is an unavoidable part of making this move.[43]

CONCLUSION AND FUTURE WORK

Modernizing legacy systems and executing robust
database migration strategies have become critical
imperatives in today’s digital-first enterprise
landscape. As demonstrated, legacy systems,
despite their foundational roles, are often barriers
to innovation due to their rigid architectures,
outdated technologies, and high maintenance costs.
Migration of RDBs is a complex and multi-phased
process. However, it ensures that organizations fall
in line with modern IT infrastructure, including the
cloud native and smart one. Rehosting, replacing,
mitigation, and re-targeting are practical ways
of system modernization under reengineering
approaches. Thorough pre-migration assessment,
pilot testing, and ensuring data integrity tools
such as SSMA all lower the risk and increase the
success rate of migrations. As an extension to it, the
integration of interoperable messaging protocols
like AMQP makes the communication seamless
after migration across diverse systems; thus, the
extent of modernization is expanding. Legacy
modernization as well as database migration not
only aid in operational efficiency and scalability
but also play an instrumental role in establishing
a strong base for the digital transformation. An
approach to move from obsolete systems to
future-ready platforms with minimal disruption
can be done by looking back with structured
methodologies and best practices.
The understanding and analysis of legacy
systems could be automated so that migration

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 8

projects would consume less time and money in
future research on database migration. Finally,
still further automating the migration process
is the development of intelligent tools that are
based on AI and machine learning for schema
translation, data transformation, and anomaly
detection. Moreover, database environments
in modern times are becoming increasingly
complex and comprise several other factors which
should be taken into account during a database
migration. For example, data security during a
migration needs to be robust, and interoperability
between heterogeneous systems also has to be
enhanced, with database migration being cloud-
based. Organizations will benefit from further
advancements that make the process of migration
more efficient and resilient, perfectly adapting to
the needs of those organizations.

REFERENCES

1. Goerzig D, Bauernhansl T. Enterprise architectures for
the digital transformation in small and medium-sized
enterprises. Procedia Cirp 2018;67:540-5.

2. Abhishek, Khare P. Cloud security challenges:
Implementing best practices for secure saas application
development. Int J Curr Eng Technol 2021;11:669-76.

3. Flynn T, Triantafilis J, Rozanov A, Ellis F, Lázaro-
López A, Watson A, et al. Numerical soil horizon
classification from South Africa’s legacy database.
Catena 2021;206:105543.

4. Elamparithi M, Anuratha V. A review on database
migration strategies, techniques and tools. World J
Comput Appl Technol 2015;3:41-8.

5. Anju, Hazarika AV. Extreme gradient boosting using
squared logistics loss function. Int J Sci Dev Res
2017;2:54-61.

6. Thokala VS. A comparative study of data integrity
and redundancy in distributed databases for web
applications. Int J Res Anal Rev 2021;8:383-9.

7. Bakar HA, Razali R, Jambari DI. Legacy systems
modernisation for citizen-centric digital government:
A conceptual model. Sustainability 2021;13:13112.

8. Gogineni A. Observability driven incident management
for cloud-native application reliability. Int J Innov Res
Eng Multidiscip Phys Sci 2021;9:1-10.

9. Srinivas M, Ramakrishna G, Rao KR,
Suresh Babu E. Analysis of legacy system in software
application development: A comparative survey. Int J
Electr Comput Eng 2016;6:292-7.

10. Yang G, Jan MA, Rehman AU, Babar M, Aimal MM,
Verma S. Interoperability and data storage in internet
of multimedia things: Investigating current trends,
research challenges and future directions. IEEE Access
2020;8:124382-401.

11. Fahmideh M, Daneshgar F, Rabhi F, Beydoun G.
A generic cloud migration process model. Eur J Inf Syst

2019;28:233-55.
12. Seetharaman KM. Internet of things (IoT) applications in

SAP: A survey of trends, challenges, and opportunities.
Int J Adv Res Sci Commun Technol 2021;3:499-508.

13. Ali M, Hussain S, Ashraf M, Paracha MK. Addressing
software related issues on legacy systems - a review. Int
J Sci Technol Res 2020;9:3738-42.

14. Murua A, Carrasco E, Agirre A, Susperregi JM,
Gãmez J. Upgrading legacy EHR systems to smart
EHR systems. In: Smart Innovation, Systems and
Technologies. Germany: Springer; 2018.

15. Seetharaman KM. End-to-End SAP implementation
in global supply chains: Bridging functional and
technical aspects of EDI integration. Int J Res Anal Rev
2021;8:1-7.

16. Thokala VS. Integrating machine learning into web
applications for personalized content delivery using
python. Int J Curr Eng Technol 2021;11:652-60.

17. Thakran V. Environmental sustainability in piping systems :
Exploring the impact of material selection and design
optimisation. Int J Curr Eng Technol 2021;11:523-8.

18. Pillai V. A study of database migration: Understanding
the user experience. TRACE Tennessee Res Creat Exch
2019.

19. Hussein AA. Data migration need, strategy, challenges,
methodology, categories, risks, uses with cloud
computing, and improvements in its using with cloud
using suggested proposed model (DMig 1). J Inf Secur
2021;12:79-103.

20. Neeli SS. Key challenges and strategies in managing
databases for data science and machine learning. Int J
Res Publ Rev 2021;2:9.

21. Tupsakhare P. From legacy to modern: Migrating
with SQL server migration assistant. J Sci Eng Res
2020;7:304-8.

22. De Haas H. A theory of migration: The aspirations-
capabilities framework. Comp Migr Stud 2021;9:8.

23.	 Dizdarević	 J,	 Carpio	 F,	 Jukan	 A,	 Masip-bruin	 X.	
A survey of communication protocols for internet
of things and related challenges of fog and cloud
computing integration. 2018;51:1-29.

24. Gupta V, Khera S, Turk N. MQTT protocol employing
IOT based home safety system with ABE encryption.
Multimed Tools Appl 2021;80:2931-49.

25. Neeli SS. Optimizing database management with
devops: Strategies and real-world examples. J Adv Dev
Res 2020;11:8.

26. Goyal A. Enhancing engineering project efficiency
through cross-functional collaboration and iot
integration. Int J Res Anal Rev 2021;8:396-402.

27. Carling J, Collins F. Aspiration, desire and drivers of
migration. J Ethn Migr Stud 2018;44:909-26.

28. Pandya S. Predictive analytics in smart grids :
Leveraging machine learning for renewable energy
sources. Int J Curr Eng Technol 2021;11:677-83.

29. Immadisetty A. Edge analytics vs. Cloud analytics:
Tradeoffs in real-time data processing. J Recent Trends
Comput Sci Eng 2016;13:42-52.

30. Salvatierra G, Mateos C, Crasso M, Zunino A,
Campo M. Legacy system migration approaches. IEEE
Lat Am Trans 2013;11:840-51.

Patel and Tandon: A Deep Dive into Effective Database Migration Approaches for Transitioning Legacy Systems in
Advanced Applications

AJCSE/Oct-Dec-2022/Vol 7/Issue 4 9

31. Immadisetty A, Olusegun J. Real-time data analytics
in customer experience management: A framework for
digital transformation and business intelligence. Int J
Sci Res Comput Sci Eng Inf Technol 2021;10:1280-8.

32. Kolluri V. A comprehensive analysis on explainable and
ethical machine: Demystifying advances in artificial
intelligence. TIJER Int Res J 2015;2(7):pp. 2349-9249.

33. Abu Bakar HK, Razali R, Jambari DI. A guidance to
legacy systems modernization. Int J Adv Sci Eng Inf
Technol 2020;10:1042-50.

34. Thokala VS. Utilizing docker containers for reproducible
builds and scalable web application deployments. Int J
Curr Eng Technol 2021;11:661-8.

35. Wahyudi A, Junirianto E, Franz A. Web and application
program interface (API) design “parmon” modern
parking application. TEPIAN 2021;2:108-15.

36. Neeli SS. Real-time data management with in-memory
databases : A performance- centric approach. J Adv
Dev Res 2020;11:1-8.

37. Althani B, Khaddaj S. Systematic review of legacy
system migration. In: 2017 16th International
Symposium on Distributed Computing and Applications
to Business, Engineering and Science (DCABES).
United States: IEEE; 2017. p. 154-7.

38. Wijaya YS, Akhmadarman A. A framework for data
migration between different datastore of NoSQL

database. In: Proceeding - 2018 International
Conference on ICT for Smart Society: Innovation
Toward Smart Society and Society 5.0, ICISS; 2018.

39. M’Baya A, Laval J, Moalla N. An assessment conceptual
framework for the modernization of legacy systems.
In: International Conference on Software, Knowledge
Information, Industrial Management and Applications.
Delaware: SKIMA; 2017.

40. Khan R, McLaughlin K, Kang B, Laverty D,
Sezer S. A seamless cloud migration approach to secure
distributed legacy industrial SCADA systems. In: 2020
IEEE Power and Energy Society Innovative Smart Grid
Technologies Conference. ISGT; 2020.

41. Preti JP, Souza AN, Freiberger EC, De Almeida Lacerda T.
Monolithic to microservices migration strategy in public
safety secretariat of mato grosso. In: 3rd International
Conference on Electrical, Communication and Computer
Engineering. ICECCE; 2021.

42. Schnappinger M, Streit J. Efficient platform migration of
a mainframe legacy system using custom transpilation.
In: Proceedings - 2021 IEEE International Conference
on Software Maintenance and Evolution. ICSME; 2021.

43. Martens A, Book M, Gruhn V. A data decomposition
method for stepwise migration of complex legacy data.
In: Proceedings - International Conference on Software
Engineering, 2018.

