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ABSTRACT
Measurement of vital signs such as heart rate (HR), respiratory rate (RR), blood pressure (BP), and 
oxygen saturation (SpO2) is important for everyone in recent years due to the spread of epidemic diseases 
such as SARS and Coronavirus disease-19. This study presents methods to measure the four vital signs 
(HR, RR, BP, and SpO2) simultaneously, contactless, and in real-time from facial video using a webcam. 
The estimation of the four vital signs in our study is based on photoplethysmography (PPG) extracted 
from the skin. There are many studies that dealt with the measurement of vital signs from PPG, but our 
study was distinguished from them by estimating and monitoring the four vital signs together in real-
time and in less initial time takes 6 s only with good results where the maximum error is: ±4, ±2.2, ±3, 
±1, and ±2 for HR, RR, systolic BP (SP), diastolic BP (DP), and SpO2, respectively.

Key words: Heart rate, Respiratory rate, Blood pressure, Oxygen saturation, Coronavirus disease-19, 
Facial video

INTRODUCTION

In biomedical metrology, the measurement of 
vital signs such as heart rate (HR), respiratory rate 
(RR), blood pressure (BP), and oxygen saturation 
(SpO2) is a basic task in the diagnosis and 
management of diseases.[1-3] Conventional devices 
for these tasks are based on contact approaches 
mostly, which have several drawbacks. Foremost, 
contact with the body and skin raises the risk of 
skin irritation and germ contamination. Moreover, 
these devices limit the patient’s body movement, 
accordingly, can lead to severe inconveniences. 
Therefore, the contactless estimation of vital signs 
using a camera is constantly gaining importance 
due to its advantages in terms of hygiene and 
patient convenience.
In 1995, Costa et al. studied the first contactless 
safety monitoring system.[4] They used camera 
images to derive physiological parameters with 
the help of skin color variability. However, their 
approaches did not report quantitative results; they 
only reported a graph of heartbeats. Following 
this first attempt, development was moderate 
and in 2005 another innovative approach was 
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implemented using a thermal camera for measuring 
the emotional state of the computer user using 
the facial thermal image.[5] Takano et al. showed 
in 2006 that more than a single physiological 
parameter can be estimated simultaneously 
using a camera but their system’s efficiency was 
unknown.[6] In recent years, researchers that using 
photoimaging images to estimate vital signs using 
advanced image and signal processing techniques 
have increased dramatically.[7-16]

To develop viable systems for video-based health 
sign monitoring, the application environment 
must be defined first, followed by the necessary 
system parameters and processing algorithms, as 
well as display methods.[17]

In this study, we propose a real-time health care 
monitoring system via a webcam for indoor and 
outdoor personal use. Given the Coronavirus 
disease-19 outbreak, it can be also used to ensure 
the safety of employees when they come to work. 
Our proposed methods can monitor HR, RR, BP, 
and SpO2 together for one individual only at the 
same time.

HR

The heart is the most essential muscle organ in the 
human body, controlling blood flow throughout 
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the entire body. The HR points to the number of 
times a heart pulses in 1 min.[18] The HR evaluates 
a heart’s strength and performance. Different 
sensory equipment such as a Doppler probe,[19] 
a pulse oximeter,[20] and an electrocardiogram 
(ECG) machine[21] used to monitor HR. The normal 
range of HR at resting is 60–80 beats per minute 
(bpm) for healthy adults,[22] while in children vary 
depending on their age.[23] Many various attempts 
have been reported in the literature to contactless 
HR measurement using a webcam,[24-30] a thermal 
camera,[31] a charge coupled device camera,[32] 
a Complementary Metal Oxide Semiconductor 
camera,[33] and a smartphone camera.[34] Driver 
monitoring, sleep monitoring, newborn and 
elderly monitoring, emotional and stress detection, 
telemedicine, etc., are some of the clinical and non-
clinical applications of contactless HR monitoring 
through a camera.[17]

RR

RR is the number of breaths per minute.[35] The 
normal range of RR at rest is 12–20 breaths per 
minute for healthy adults,[36,37] whereas normal 
values for children change depending on their 
age.[23] The RR can be measured by counting 
the number of breaths take during the course of 
1 min at rest.[38] This method needs time, attention 
and is impractical in continuous monitoring. 
Electrophysiological tests[39] similar to ECG 
and pressure sensors[40,41] are commonly used in 
contact-based RR measurements. Ultrasound[42-47] 
or microwave[48] measurements are commonly 
used in non-contact testing procedures. In recent 
years, interest has emerged in monitoring RR 
using a camera,[49-60] whereas the studies are still 
few and need further improvement.

BP

BP is the force that blood exerts on the walls of 
blood vessels expressed in millimeters of mercury 
(mmHg). It consists of two parts: Systolic BP 
(SBP) and diastolic BP (DP). SBP is the pressure 
of the blood on the vessels’ walls during heart 
beats, while DP is the pressure of the blood on the 
vessels’ walls during heart rest. The normal range 
of SBP is (90–120 mmHg) and of DP is (60–80 
mm Hg).[61] A Conventional device to measure 
BP is a sphygmomanometer that has three major 

types: Mercury, digital, and aneroid.[62] Recently, 
the number of studies that attended on BP 
measurement via video images has increased,[63-68] 
because cuff-based measurement systems capture 
only a current BP value, which can be easily 
influenced by stress, nutrition, medicines, age, 
exercise, and other factors.

Blood SpO2

Blood SpO2 is the ratio between oxygen-carrying 
hemoglobin (Hb) (oxyhemoglobin [HbO2]) and 
the total Hb amount in the blood:[69]

 SpO
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2

2

2
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Where HbO2 and Hb are HbO2 and 
deoxyhemoglobin, respectively. The normal 
range of SpO2 is 94–100% for healthy persons.[70] 
Conventional devices to measure the SpO2 are the 
pulse oximeter[71-73] and the gas chromatograph,[74] 
which is the gold standard. The gas chromatograph 
analyzes arterial blood extracted by a specialist,[74] 
while the pulse oximeter performs noninvasive 
measurement based on the absorption properties 
of HbO2 and Hb to absorb light at different 
wavelengths.[73] It is equipped with two infrared 
(940 nm) and red (600 nm) wavelength light-
emitting diode (LEDs), a light detector, and a 
microprocessor. HbO2 absorbs infrared light and 
Hb absorbs red light.[73]

The absorption coefficients determine the ability 
of one mole of the HbO2 and the Hb to absorb 
light at a specific wavelength.[75] Figure 1 shows 
the absorption coefficients of the HbO2and the Hb 
versus different light wavelengths.[76]

In Scully et al.[14] a smartphone camera is used 
as a detector and an LED as a light source. By 
decomposing each frame in the red and blue 
color channels, the HbO2 and Hb are extracted. In 
Scharf, Verkruysse et al.[75,77] it was evaluated that 
wavelengths in the green channel are absorbed by 
the HbO2 more than those in the blue.
The wavelength range of the RGB channels of the 
camera is (370, 950) nm. At the wavelength 600 nm 
and940 nm, the HbO2 and the Hb show the greater 
difference in absorption.[78] These wavelengths 
match that used in the pulse oximeter. Therefore, 
in this study, we are proposed to extract the green 
PPG at the wavelength 600 nm and the red PPG 
at 940 nm to evaluate the SpO2 by monitoring the 
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Experimental Setup
We used a USB stream webcam (Vitade 960A) 
with built-in ring light adjustable in three 
brightness for video capturing. It has the following 
specifications: 80° wide-angle lens captures, 
automatic correction for illumination, H.264 
encoding compression, pixel resolution of 1920 
× 1080 pixels, and 30 fps. MSI laptop (core i7, 
16 GB RAM) was used in processing proposed 
methods and display the results.
For ground-truth HR, SpO2, and BP measurement, 
a fingertip pulse oximeter was used for HR and 
SpO2, which its accuracy is: SpO2 (70~100%: 
±2%; ≤70%: unspecified), HR (±3 bpm), while 
a mercury sphygmomanometer was used for BP 
that produce the most accurate results than other 
sphygmomanometers.
We connected the webcam to the laptop and 
configured the webcam settings in preparation for 
the video recording, then asked the volunteers to 
sit on a chair opposite the webcam approximately 
0.5 meters (m) away and put a pulse oximeter 
on their left index finger and asked a technical 
person to measure the BP of the volunteers by 
the sphygmomanometer. We turned on the pulse 
oximeter and started recording the video at the 
same time we asked the volunteers to start to 
compute their RR, we also asked them to commit 
to as little movement as possible in the first 6 s and 
then they can do small movements like slight head 
movements, after 20 s we stopped the recording 
and saved the video on the laptop.
At least three videos were recorded for each 
volunteer, each video under different illumination 
conditions: indoors with fluorescent ambient 
light and the second brightness of the webcam, 
indoors with natural ambient light and the second 
brightness of the webcam, and outdoors with 
indirect ambient sunlight.
For videos recording, python script with open 
computer vision (OpenCV) library is used.

METHODS

All the vital signs were found from the extracted 
photoplethysmography (PPG) signals. At the first, 
we apply Discriminative Response Map Fitting[79] 
method on each frame to find the coordinates 
of 68-facial landmarks for an individual’s face 
detection and tracking. From the detected 68-facial 
landmarks, we determined the location of the cheeks 

variance of the light intensity in the green and red 
channels of the facial video frames.

Experiments

Dataset
We searched for a public dataset that provides 
ground-truth values for all four vital signs: HR, 
RR, SpO2, and BP together, but we did not find, 
therefore we made our local dataset to evaluate 
the performance of our methods. All videos were 
recorded in 24-bit RGB color space, 30 frames 
per second (fps), 640 × 480 pixel resolution, 20 s 
length and saved in mp4 format.
The dataset consists of 42 facial-video for ten 
healthy volunteers (three males and seven females) 
between the ages of 13 and 60 years. Each volunteer 
had at least three videos in this dataset, each of 
which was recorded with different illumination, 
one outdoors with indirect ambient sunlight and 
two indoors with and without fluorescent ambient 
light. The HR and SpO2 for each volunteer were 
measured by a fingertip pulse oximeter during 
the video recording; the BP was measured 
before and after recording using a conventional 
sphygmomanometer, while the RR was computed 
by the volunteers during the recording.

Figure 1: The absorption coefficients of the HbO2 and the 
Hbversusdifferent light wavelengths: (a) From 252 nm 
to1000 nm. (b) Zoom in (a) from 600 nm to 940 nm

a

b
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with two rectangles that change in size according to 
the pose of the face as shown in Figure 2. The two 
rectangles represent the regions of interest (ROI) 
whose contains pixels of facial-skin that color values 
change with HR, RR, and the ratio of oxygen in the 
blood. From the ROI, we extracted the RGB PPG 
signals shown in Figure 3 by averaging the RGB 
channels that were decomposed from each frame.

HR and RR

The green channel contains the strongest PPG 
signal among RGB channels;[77,80] therefore, we 
used it in both HR and RR estimation.
At the first, detrending was applied on the green 
PPG signal to alleviate the non-stationary trend 

caused by motion and illumination as shown in 
Figure 4. After that, the time-series data were 
converted to its frequency spectrum by applying 
Fast Fourier Transform then take the absolute of 
it as shown in Figure 5a and b, respectively. The 
frequency spectrum was filtered by a bandpass 
filter with cutoff frequencies: 0.8–2 Hz and 0.16–
0.5 Hz corresponding to the interesting ranges for 
the HR and RR, respectively. The frequency of the 
highest peak in each filtered spectrum represents 
the frequency of the HR and RR as shown in 
Figure 5c and d, respectively. HR and RR are 
calculated as shown in equation (2) and equation 
(3), respectively:
  HR (bpm) = fHR × 60 (2)
  RR = fRR × 60 (3)

BP

Bp is affected by several factors, the most 
important of which are peripheral resistance (R) 
and cardiac output (CO). Age, gender, weight, 
and height are other factors affecting BP. R is the 
resistance of the vessels to blood flow that creates 
BP. CO is the amount of blood the heart pumps 
through the circulatory system in 1 min which is 
usually measured in units of Liter/minute (L/min) 
and calculated using HR times stroke volume (SV) 
as shown in equation (4).[81] The average healthy 
male CO value in the resting is 5 L/min, while in 
female is 4.5 L/min.[81]

  CO (L/min)=HR ×SV (4)
SV is the volume of pumped blood from the heart 
in one beat. It is found using equation (4) as:

  SV mL
CO

HR
( ) = ×1000  (5)

Pulse pressure (PP) is the difference between SBP 
and DP:

Figure 2: Face and regions of interest (ROI) detection and 
tracking. The red points indicate the 68 landmarks and the 
light-green rectangles represent the ROI

Figure 3: Photoplethysmography signals for the blue, 
green, and red channels

Figure 4: Green photoplethysmography signal after 
detrending
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  PP (mmHg)=SBP-DP (6)
PP is directly related with SV as:[82]

 

SV

PP
Weight Kg

Age y HR[25]

= × −

× − ×

( . ( ) .

( ) .

0 013 0 007

0 004  (7)
So, PP can be calculated from equation (7) as:

      

( )

( )
( )

PP mmHg  
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=
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Mean arterial pressure (MAP) is the average BP 
during one cardiac cycle. MAP is related to CO 
and R by a similar relationship to Ohm’s law for 
electric current and sometimes called Darcy’s la.[83] 
Therefore, MAP can be found by the following 
equation:
  MAP (mmHg)=CO×R (9)
After finding PP and MAP values, DP founded 
as:[84]

  DP mmHg MAP
PP

( ) = −
3

 (10)

Finally, the value of SBP is found by substituting 
equation (6) into equation (10):
  SBP (mmHg)=3MAP-2DP (11)
The value of R was founded through experiments, 
as the value that gave the best results, which is 
17.52 mmHg·min/L.

Blood SpO2

SpO2 monitors using the same principle used in 
the literature[85] with some differences in methods 
and different tools as shown in Table 1.
In our proposed method, the amplitude and the 
shape of the extracted PPG signals are important 
to estimate the SpO2.
First, the red and green PPG signals were 
normalized then filtered to reduce the noise effect 
by using a low-pass filter with cut-off frequencies: 
2.2 Hz and 3.2 Hz, respectively. After that, the 
peaks in both the red and the green PPG signals 
were found. The peak height (Vpλ) and the rising 
edge slope of the peak (mλ), which are cleared in 
Figure 6, were computed to estimate the SpO2. 

Figure 5: Frequency spectrum of the: (a) Fast Fourier transform (FFT) of the signal. (b) Absolute of FFT of the signal.  
(c) Heart rate-filtered signal. (d) Respiratory rate-filtered signal

a

b

c

d
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The symbol λ is an indicator of whether the green 
PPG or the red PPG was used, where it is equal to 
600 nm or 940 nm, respectively.
SpO2 was calculated according to equation (12),[86] 
where ƐHbO2λ, and ƐHbλ refer to the absorption 
coefficients of HbO2 and Hb, respectively, at 
wavelength λ.

( )
( )

( )
( ) ( )

600

940

600 600

940 940

Hb 940 940

Hb 600 600
2

940 940 Hb HbO2

600 600 Hb HbO2

m ln Vp  

 m ln Vp
SpO

m ln(Vp )

 m ln Vp  

ε

− ε
=

ε − ε

− ε − ε  (12)

We optimized the SpO2 by applying equation 
(14).[85] The non-normalized red, green, and blue 
PPG signals were used for optimization. The Pβ 
terms is founded using equation (13), whereβ 
indicates the non-normalized red (R), green (G), 
and blue (B) PPG signals. The constant 16.53 is 
the mean of errors between the reference values 
and the results of the training signals.
 Pβ=Maximum (β)-minimum (β) (13)

SpO2%= (SpO2×100+ (PR×0.25)−
     (PG×0.05)−(PB×0.55))−16.53 (14)
These methods for HR, RR, BP, and SpO2 
monitoring were applied on both recorded videos 
and real-time videos. In real-time monitoring, the 
number of fps is decreasing over time as shown in 
Figure 7, which is limited by: Camera frame rate, 
processor’s number of cores, and the calculation 
time. The camera frame rate and the number 
of processor cores are constant and we cannot 
increase them, but we can reduce the calculation 
time to keep the number of fps from constantly 
decreasing by applying the simplest and least 

Table 1: The different parameters between our study and 
the study in the literature[85]

Parameter Literatures[85] Ours
Human part Finger (index) Face (cheeks)

Sensor Rear camera of a 
smartphone

USB webcam

Processor Smartphone Laptop

Software Android application Python script

Illumination Led light of the 
smartphone

Ambient 
light + built-in 
webcam ring light

Connection Contact Contactless

Real-time No Yes

Difficulty Low High

Figure 6: The slope of the rising edge (mλ) and the height 
of the peak (Vpλ) of a photoplethysmography signal

Figure 7: Number of fps during 15-min real-time 
monitoring

time-consuming monitoring methods, which is 
exactly what we did.
All the proposed methods were performed using 
python 3.8.5 with OpenCV, Numpy, Scipy, 
Matplotlib, and other libraries.

THE RESULTS

After applying our proposed methods to monitor 
HR, RR, BP, and SpO2 on our local dataset, and 
comparing the results with the ground-truth, the 
results showed convergence with little difference 
between the three experiments due to the 
difference in illumination as shown in Tables 2-4. 
The maximum error was: HR ±3, RR ±2.3, SBP 
±3, DP ±2, SpO2±3.
After the success of our methods on monitoring 
the four vital signs on recorded videos, we 
apply them on real-time videos for continuous 
15 min indoors with fluorescent ambient light 
and the second brightness of the webcam. The 
maximum error was: HR ±4, RR ±2.2, SBP ±3, 
DP ±1, SpO2 ±2.
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CONCLUSION

Monitoring vital signs such as HR, RR, BP, and 
SpO2 are very important to ensure the safety of 
the individual because it is an indicator of many 
serious diseases whose risk can be reduced if 
detected early. The importance of monitoring vital 
signs without contact has increased in recent years 
with the outbreak of epidemic diseases such as the 
Coronavirus.
This research is concerned with monitoring 
these vital signs in real-time without contact and 
continuously by facial video, as our proposed 
methods have achieved good results in the 
monitoring. The proposed monitoring system 
consists of a USB webcam with attached lighting 
for the purpose of capturing videos and a laptop 
for the purpose of processing and displaying the 
results.
We were able to monitor the vital signs indoors 
and outdoors under different types of illumination, 
provided that they are fixed. SpO2 measurement 
showed a higher sensitivity toward lighting than 
the rest of the vital signs, because SpO2 monitoring 
is affected by the intensity of the illumination, and 
thus the contactless monitoring of SpO2 is more 
difficult than contact monitoring, from a video.
In real-time monitoring, we encountered the issue 
of frames per second decreasing causing data 
missing and errors in results. We overcame this 
problem by using the simplest possible algorithms 
and methods to reduce the processing time, taking 
into account that the results were not affected by 
that.
Our proposed methods can be used for personal 
monitoring of vital signs for individuals and can 
also be used to ensure the safety of employees in 
companies and public departments.
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