
© 2018, AJCSE. All Rights Reserved 11

RESEARCH ARTICLE

Generating Frequent Itemsets by RElim on Hadoop Clusters
B. Usharani

Department of CSE, KL University, Andhra Pradesh, India

Received: 02-01-2018; Revised: 25-02-2018; Accepted: 12-03-2018

ABSTRACT
Data mining is considered as the process of extracting the useful information by finding the hidden
information out of large chunks of dataset. Frequent itemset mining is the popular data mining methods.
MapReduce has turn out to be an important distributed processing model for large-scale data-intensive
applications like data mining. MapReduce is an efficient, scalable, and easy programming model for
large-scale distributed data processing on a huge cluster of commodity computers. In this paper, RElim
algorithm is implemented on MapReduce framework.

Key words: Association rule mining, frequent pattern mining, frequent itemset mining, Hadoop, RElim

INTRODUCTION

To handle storage resources across the cluster,
Hadoop uses a distributed user-level file system.
The file system Hadoop distributed file system
(HDFS) is written in Java and measured for
portability across heterogeneous hardware and
software platforms. An important characteristic of
Hadoop is the partitioning of data and computation
across thousands of hosts and executing application
computations in parallel. MapReduce is an easy
programming model for large-scale distributed
data processing and also used in cloud computing.
Association rule mining (ARM) is an essential
component of data mining. Data mining and
knowledge discovery have appeared to mine
useful, hidden and unknown patterns, and
knowledge from large database. ARM is one of
the mainly essential and accepted procedures of
data mining which locates interesting correlation
or association between set of items or attributes
and also frequent patterns in large database.[1] The
mainly usual application of ARM is in market
basket analysis which examines the purchasing
behavior of customers by discovering the frequent
items purchased together. In addition to the
many business application, it is also appropriate
to bi-informatics, medical diagnosis, and text
analysis.[2] Various ARM algorithms have been

Address for correspondence:
B. Usharani
E-mail: ushareddy.vja@gmail.com

developed that diverges from each other in the
way the approach they used. These approaches are
based on candidate generation, without candidate
generation, based on equivalence class clustering,
maximal hypergraph clique clustering, and lattice
traversal scheme.[3-5] When it comes to mine vast
volume of data, these algorithms failed to verify
scalability and efficiency. The major reasons
behind this are the processing capacity, storage
capacity, and RAM of a single machine.[6] For
this reason, parallel and distributed algorithms
are developed to present large-scale computing
in ARM on several processors. These parallel
and distributed algorithms progress the mining
performance but also include some overheads
such as partition of input data, workloads
balancing, reduction in communication costs, and
aggregation of information at local nodes to form
the global information. There are a variety of such
algorithms developed that deals with these issues in
homogeneous computing environment.[7-10] These
usual parallel and distributed algorithms are not
suitable for heterogeneous environment such as
heterogeneous cluster and grid environment.[11-18]

APACHE HADOOP MAPREDUCE
FRAMEWORK

The word “MapReduce” originally referred to the
proprietary Google technology.[44] MapReduce
was first described Dean and Ghemawat[43]research
paper from Google, by Jeffrey Dean and Sanjay
Ghemawat, researchers in Google. MapReduce

Available Online at www.ajcse.info
Asian Journal of Computer Science Engineering 2018;3(2):11-18

ISSN 2581 – 3781

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 12

is a patented software framework introduced by
Google to support distributed computing on large
datasets on clusters of computers. MapReduce
is a functional programming model. It runs in
the Hadoop background to provide scalability,
simplicity, speed, recovery, and easy solutions
for data processing. MapReduce is a parallel
and distributed solution approach developed by
Google for processing large datasets. MapReduce

is used by Google and Yahoo to power their web
search. Hadoop is a large-scale distributed batch
processing infrastructure for parallel processing
of big data on large cluster of commodity
computers.[30] Hadoop is an open source project
of Apache[23] which implemented Google’s File
System[31] as HDFS and Google’s MapReduce[21]
as Hadoop MapReduce programming model.

Hadoop MapReduce

MapReduce is a programming model considered
for parallel processing of vast volumes of data by
separating the job into independent tasks across a
bulky number of machines. It uses two concepts:

Node1 Node 2

File Loaded from local HDFS
Stores

File Loaded from local HDFS
Stores

File

File

Input Format

Split Split

RR RR

mapap map

partitioner

sort

reduce

output
Format

Input
(k,V)p
airs

Interm
ediate
(K,V)
pairs

Wite back
to local
HDFS
stores

Record
readers
(RR)

File

File

Input
(k,V)p
airs

Intermedi
ate (K,V)
pairs

Wite back to
local HDFS
stores

shuffle

Figure 2: :Detailed Hadoop MapReduce data flow

Figure 1: Overall view of Hadoop distributed file system

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 13

of data to the mapper machines and collects the
information once a mapper is finished. If the
mapper is finished, then the reducer machines will
be allocated work. All key/value pairs with the
same key will be transporting to the same reducer.
Table 1 data are represented in diagrammatic form
as shown in Figure 3.
MapReduce is a programming model since all the
parallelization, intermachine communication and
fault tolerance are held by run-time system.[21]

ARM

It is proposed by Agrawal et al., in 1993.[41] It is
an important data mining model studied widely
by the database and data mining. Initially ARM is
used for market basket analysis to discover how
items are purchased by customers.

Definition

ARM is a procedure which is meant to find frequent
patterns, correlations, associations, or causal
structures from datasets found in various kinds of
databases such as relational databases, transactional
databases, and other forms of data repositories.[42]

The major challenge found in frequent pattern
mining is a number of result patterns. If the

Table 1: Input and output for map and reduce
Category Input Output
Map <k1, v1> list < k2, v2>

Reduce <k2, list (v2)> (k3, v3)

Figure 3: MapReduce model with input and output shown
for each phase

Map and reduce. Based on it, a MapReduce
program consists of two functions mapper and
reducer which run on all machines in a Hadoop
cluster. The input and output of these functions are
in the form of (key and value) pairs.[30] MapReduce
has two key components: Map and reduce. A map
is a function which is used on a set of input values
and computes a set of key/value pairs. Reduce is
a function which takes these results and applies
another function to the result of the map function.
A reducer gets all the data for an individual “key”
from all the mappers [Figure 1].
MapReduce programs are designed to compute
huge volumes of data in a parallel fashion. This
requires separating the workload across a large
number of machines. This model would not scale
to large clusters [Figure 2].[30]

All data elements in MapReduce cannot be
updated. If in a mapping task you change an input
(key and value) pair, it does not get reflected
back in the input files; communication occurs by
generating new output (key and value) pairs which
are then promoted by the Hadoop system into the
next phase of execution.[30]

Input and output types of a MapReduce job:
(Input) <k1, v1> -> map -> <k2, v2>-> reduce ->
<k3, v3> (Output). The mapper takes the input
(k1, v1) pairs from HDFS and generates a list of
intermediate (k2, v2) pairs. An optional combiner
function is applied to decrease communication
cost of transferring intermediate outputs of
mappers to reducers. Output pairs of mapper
are locally sorted and grouped on same key and
provide for to the combiner to make local sum. The
intermediate output pairs of combiners are shuffled
and exchanged between machines to cluster all the
pairs with the same key to a single reducer. This is
the only one communication step takes place and
handle by the Hadoop MapReduce platform. There
is no other communication between mappers and
reducers take place. The reducer takes (k2, list [v2])
values as input, put together sum of the values in
list (v2) and produce new pairs (k3, v3).

[30,32] Figure 2
illustrates the workflow of MapReduce.
MapReduce incorporates a framework which
supports MapReduce operations. A master
controls the whole MapReduce process. The
MapReduce framework is responsible for load
balancing, reissuing task if node as failed or is to
slow, etc. The master divides the input data into
separate units and sends the individual chunks

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 14

minimum support (threshold) value becomes lower,
then an exponentially large number of itemsets are
generated. Hence, pruning unnecessary patterns can
be done effectively. The main aim is to minimize the
process of finding patterns which are supposed to be
efficient, scalable, and detect the important patterns.

Disadvantages of other popular frequent
mining algorithms

1. Apriori reduces the size of the candidate
set, but it scans the database many times.

The performance is affected by scanning the
database multiple times. Apriori is efficient
only for market basket analysis.

2. Frequent pattern (FP)-growth overcomes
the limitations of Apriori. It scans only the
database only twice. The performance is
improved when compared to Apriori. FP
suffers from memory requirement problem.

Traditional RElim

This algorithm was proposed by Christian
Borgelt, in 2005.[40] RElim stands for “Recursive
Elimination.” RElim tries to find all frequent
itemsets with a given prefix by recursively renewing
support at the same time. The approach used in
the RElim is “pattern-growth method.” RElim
is based on H-mine and FP-growth algorithms.
RElim uses linked list as a data structure. RElim
uses horizontal layout. RElim algorithm is free
from candidate generation.

RElim algorithm [Figure 4][40]

The preprocessing of RElim is demonstrated in
Figure 5, which shows an example transaction
database on the left. The frequencies of the items
in this database, sorted ascending, are shown in
Figure 5 in the middle. If we are given a user-
specified minimal support of three transactions,
items f and g can be discarded. After doing
so and sorting the items in each transaction
ascending with respect to their frequencies, we
obtain the reduced database shown in Figure 5
on the right.Figure 4: Relim algorithm

Figure 5: Transaction database (left), item frequencies (middle), and reduced transaction database with items in
transactions sorted ascending with respect to their frequency. (a) Initial database. (b) Calculating item frequencies
(support = 3). (c) Sorted with respect to frequencies

a b c

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 15

Recursive procedure of RElim

The lists are grouped according to their leading
item. The leading item of each transaction has
been removed from all transactions, as it is
implicitly represented by which list a transaction
is contained. Each transaction list contains in its
header a counter for the number of transactions.
For the rightmost list, this count states the support
of the associated item in the represented dataset
and the left list represented the list of items
followed by the leading item [Figure 6].
Reassignments are made to lists that lie to the
right of the currently processed one. For each
list element, the leading item of its transaction
is retrieved and used as an index into the list
array; then, the element is added at the head of
the corresponding list. Copy of the list element
is inserted in the same way into an initially
second array of transaction lists. In this particular
example, remove h and makes its support as zero
and the list assigned to the remaining lists, i.e. h
contains three lists of itemsets (1) (e,a,b), (2)
(b,d), and (3) (a,b,d). The first list (eab) is added
to list bcz the leading element is e (ab is added to
list e) and the support is incremented by one bcz
only one is added from the previous list. For the
second list (b,d), the second list item d is added
to list b and increment support of b by 1. For the
third list (abd), the leading item is a, the remaining
list (bd) is added to the a, and increment support of
a by one. The procedure is shown right as prefix h
[Figure 7].
Next, eliminate e by reassigning the list items of
e to the corresponding list. In the above example,
e has three sublists, namely (bd), (cbd), and (ab).
Reassign the lists one by one, i.e. first d to b, bd to
c, and b to a and increment the support of b, c, and
a by one [Figure 8].
The next step is eliminate a by reassigning the
list items of to the corresponding list. In the
above example, a has four sublists, namely (b),
(cbd), (bd), and (b). The first list b, as the first
list contains only one item directly increment

Figure 6: Initial database in RElim

Figure 7: Eliminate h and prefix for h is also shown

Figure 8: Eliminate e

Figure 9: Eliminate a

Figure 10: Eliminate c

Figure 11: Eliminate b

support of b, for (cbd) sublist add item (bd) to c
and increment support of c, for list (bd) add item
d to b and increment support of b and the last list

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 16

contains only one item d so directly increment
support of d [Figure 9].
The above discussed same recursive procedure is
applied to eliminate c [Figure 10].
All transaction lists have been processed and
the lists have become empty. The list for the last
element (referring to item d) is always empty
because there are no items left that could be in a

transaction and thus all transactions are represented
in the counter [Figure 11].

RELIM ALGORITHM ON HADOOP
MAPREDUCE

To implement an algorithm on MapReduce framework,
the main tasks are to design two independent map
and reduce functions for the algorithm and to convert
the datasets in the form of (key and value) pairs.
In MapReduce programming, all the mapper and
reducer on different machines execute in parallel
fashion, but the final result is obtained only after the
completion of reducer. If algorithm is recursive, then
we have to execute multiple phases of MapReduce to
get the final result [Figure 12].[33]Figure 12: Design of the proposed system

Figure 13: Generating frequent itemsets by RElim on MapReduce

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 17

Traditional RElim to MapReduce

HDFS breaks the transactional database into blocks
and distributes to all mappers running on machines.
Each transaction is converted to (key and value) pairs
where key is the ID and value is the list of items.
Mapper reads one transaction at time and output (key’
and value’) pairs where key’ is each item in transaction
and value is support or count. The combiner combines
the pairs with same key’ and makes the local sum
of the values for each key. The output pairs of all
combiners are shuffled and exchanged to make the
list of values associated with same key and give
output in sorted order of items for each transaction by
removing the items that have support less than user
support. Reducers take these item lists and output the
linked list of items separated by their leading items.
Final frequent itemsets are obtained by merging the
output of all reducers [Figure 13].
Table 2 summarizes the algorithms corresponding to
mapper, combiner, and reducer for RElim algorithm.

CONCLUSION

MapReduce is very beneficial for parallel processing
of big data on large cluster of commodity computers.
In this paper, there is focus on the RElim algorithm
on MapReduce framework. The MapReduce
computing model is similar to the computation
of frequent itemsets in RElim algorithm. RElim
performs excellently on sparse datasets. For
artificial datasets, RElim has the best performance
when compared to other frequent itemset mining
algorithms. For BMS-webView-1, RElim
performance is almost equivalent to FP growth.

REFERENCES

1. Hipp J, Ulrich G, Gholamreza N. Algorithms
for association rule mining-a general survey and

AQ1

comparision. ACM 2000;2:58-64.
2. Han J, Kamber M. Data Mining: Concepts and

Techniques. San Francisco: Morgan Kaufmann
Publishers; 2006.

3. Agrawal R, Srikant R. Fast algorithms for mining
association rules in large databases. In; Proceedings
Twentieth International Conference on Very Large
Databases; 1994. p. 487-99.

4. Han J, Pei J, Yin Y. Mining frequent pattern s without
candidate generation. In: ACM SIGMOD International
Conference on Management of Data. Vol. 29. New York:
ACM; 2000. p. 1-12.

5. Zaki M, Parthasarathy S, Ogihara M, Li W. New
algorithms for fast discovery of association rules.
In: Proceedings 3rd Int’l Conferences Knowledge
Discovery and Data Mining. Menlo Park: AAAI Press;
1997. p. 283-6.

6. Oruganti S, Ding Q, Tabrizi N. Exploring HAD OOP as
a platform for distributed association rule mining. In:
FUTURE COMPUTING 2013 The Fifth International
Conference on Future Computational Technologies and
Applications; 2013. p. 62-7.

7. Agrawal R, Shafer JC. Parallel mining of association
rules. In: IEEE Transactions on Knowledge and Data
Engineering. Vol. 8; 1996. p. 962-9.

8. Zaki MJ. Parallel and distributed association mining:
A survey. Concurr IEEE 1999;7:14-25.

9. Zaki MJ. Parallel and distributed data mining: An
introduction. In: LNAI 1759 Large-Scale Parallel Data
Mining. Heidelberg: Springer; 2000. p. 1-23.

10. Bhaduri K, Das K, Liu K, Kargupta H, Ryan J.
Distributed data mining bibliography; 2008:1-46.

11. Fiolet V, Olejnik R, Lefait G, Toursel B. Optimal grid
exploitation algorithms for data mining. In: Proceedings
5th IEEE International Symposium on Parallel and
Distributed Computing; 2006. p. 246-52.

12. Luo C, Pereira AL, Chung SM. Distributed mining
of maximal frequent itemsets on a data grid system.
J Supercomput 2006;37:71-90.

13. Aouad LM, Le-Khac NA, Kechadi TM. Distributed
frequent item sets mining in heterogeneous platforms.
J Eng Comput Archit 2007;1:1-12.

14. Yang CT, Shih WC, Tseng SS. A heuristic data
distribution scheme for data mining applications on grid
environments in fuzzy systems. FUZZ-IEEE (IEEE
World Congress on Computational Intelligence). Hong
Kong: IEEE Press; 2008. p. 1-6.

Table 2: Algorithm: Mapper, combiner, and reducer
Mapper (key, value)
//key: ID
//value: itemsets in
transaction Ti
for each transaction Ti
assigned to Mapper do
for each itemset in Ck
do
if itemset ∈ Ti
output (itemset, count);
end if
end for
end for

Combiner (key, value)
//key: items
//value: count
for each itemset do
for each item in list (itemset) of
corresponding itemset do

compare items with their frequencies and min
support count
end for
sort (itemset);
end for

Reducer (key, value)
//key: list (itemset)
//value: count
for each list do
for each itemset in
leading item of its transaction is retrieved and used as an index
into the list array

end for
Increment count if list is repeated
output (count, list (itemset);
end for

Usharani: Frequent item setsby RElim

AJCSE/Apr-Jun-2018/Vol 3/Issue 2 18

15. Tlili R, Slimani Y. A novel data partitioning approach
for association rule mining on grids. Int J Grid Distrib
Comput 2012;5:1-20.

16. Tlili R, Slimani Y. Executing association rule mining
algorithms under a grid computing environment. In:
Proceedings Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (PADTAD
‘11), ACM; 2011. p. 53-61.

17. Tlili R, Slimani Y. Mining association rules on grid
platforms. In: LNCS Euro-Par 2011 Workshops,
Springer; 7155. p. 201-10.

18. Tlili R, Slimani Y. Dynamic load balancing of
large-scale distributed association rule mining. In:
Proceedings IEEE International Conference on
Computer Application and Industrial Electronics
(ICCAIE 2011); 2011. p. 553-8.

19. Lin MY, Lee PY, Hsueh SC. Apriori Based Frequent
Itemset Mining Algorithms on Map Reduce. In:
Proceedings 6th International Conference on Ubiquitous
Information Management and Communication, ACM;
2012. p. 1-8.

20. Moens S, Aksehirli E, Goethals B. Frequent Item
Setmining for Big Data. In: Proceedings IEEE
International Conference on Big Data; 2013. p. 1-8.

21. Dean J, Ghemawat S. MapReduce: Simplified da
ta processing on large clusters. ACM Commun
2008;51:107-13.

22. Chen Y, Archanan G, Rean G, Randy K. The Case
for Evaluating Map Reduce Performance using
Workload Suites. IEEE 19 International Symposium on
Modelling, Analysis and Simulation of Computer and
Telecommunication Systems; 2011. p. 390-9.

23. Apache Hadoop. Available from: http://www.hadoop.
apache.org.

24. Tan PN, Steinbach M, Kumar V. Chapter 5-Association
Analysis: Basic Concepts and Algorithms, Introduction to
Data Mining. Boston: Addison-Wesley; 2005. p. 357-449.

25. Park JS, Ming-Syan MS, Yu PS. Using a hash-B ased
method with transaction trimming for mining association
rules. IEEE Trans Knowl Data Eng 1997;9:813-25.

26. Park JS, Ming-Syan MS, Yu PS. An effective H ash-
based algorithm for mining association rules. SIGMOD
ACM 1995;24:175-86.

27. Zaki MS, Parthasarathy S, Li W, Ogihara M. Evaluation
of Sampling for Data Mining of Association Rules.
In: Proceedings IEEE 7th International Workshop on
Research Issues in Data Engineering; 1997. p. 42-50.

28. Savasere A, Omiecinski E, Navathe S. An Efficient
Algorithm for Mining Association Rules in Large
Databases. In: Proceedings 21st VLDB Conference,
Switzerland; 1995. p. 432-44.

29. Brin S, Motwani R, Ullman JD, Tsur S. Dynamic item

AQ2

set counting and implication rules for market basket
data. ACM SIGMOD Record 1997;26:255-64.

30. Yahoo! Hadoop Tutorial. Available from: http://www.
developer.yahoo.com/hadoop/tutorial/index.html.

31. Ghemawat S, Gobioff H, Leung S. The google file
system. ACM SIGOPS Oper Syst Rev 2003;37:29-43.

32. Lee KH, Lee YJ, Choi H, Chung YD, Moon B. Parallel
data processing with mapreduce: A survey. ACM
SIGMOD Record 2011;40:11-20.

33. Kovacs F, Illes J. Frequent item set mining on Hadoop.
In: Proceedings IEEE 9th International Conference on
Computational Cybernetics (ICCC); 2013. p. 241-5.

34. Li N, Zeng L, He Q, Shi Z. Parallel Implementation of
RE lim Algorithm based on MapReduce. In: Proceedings
13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel and Distributed Computing, IEEE; 2012. p.
236-41.

35. Li J, Roy P, Khan SU, Wang L, Bai Y. Data Mining
Using Clouds: An Experimental Implementation of
Apriority over Map Reduce. IEEE, Processing 12th
International Conference on Scalable Computing and
Communications; 2012. p. 1-8.

36. Yang XY, Liu Z, Fu Y. Map reduce as a programming
model for association rules algorithm on hadoop. Proc
Int Conf Inform Sci Interact Sci (ICIS) 2010;99:23-5.

37. Li L, Zhang M. The Strategy of Mining Association
Rule Based on Cloud Computing. In: Proceedings IEEE
International Conference on Business Computing and
Global Informatization (BCGIN); 2011. p. 29-31.

38. Margaret HD, Xiao Y. A Survey of Association Rules,
Technical Report, Southern Methodist University,
Department of Computer Science, Technical Report TR
00-CSE-8; 2008. p. 1-65.

39. Yaha O, Hegazy O, Ezat E. An efficient implementation
of RElim algorithm based on hadoop-mapreduce model.
Int J Rev Computing 2012;12:59-67.

40. Borgelt C. Keeping Things Simple: Finding Frequent Item
Sets by Recursive Elimination Opensource Data Mining
Workshop, OSDM, II, ACM Press; 2005. p. 66-70.

41. Agarwal R, Imielinski T, Swami A. Mining association
rules between sets of items in large databases. In:
Proceeding SIGMOD 93 Proceedings of the 1993 ACM
SIGMOD International Conference on Management of
Data; 1993. p. 207-16.

42. Available from: https://www.techopedia.com/
definition/30306/association-rule-mining.

43. Dean J, Ghemawat S. MapReduce: Simplified da
ta processing on large clusters. ACM Commun
2008;51:107-13.

44. Available from: https://www.en.wikipedia.org/wiki/
MapReduce.

AQ2

AQ2

Author Queries???
AQ1:Please note reference number 19, 20, 22, 24-29, 34-39 are not cited in the text part. Kindly check

and advise.
AQ2:Kindly provide last accessed details

